Interdisciplinary Nanomaterials for Biomedical Imaging and Sensing Applications
Abstract
1. Introduction
2. Materials and Methods
Literature Corpus Analysis
3. Nanomaterials for Biomedical Imaging
3.1. Metasurface-Enhanced Detection and Specificity
3.2. Nanoparticles for Targeted Imaging and Tracing
3.3. Nanomaterials for Super-Resolution Imaging
3.4. Nanobodies for Multiplex Imaging
3.5. Computational Algorithms for Image Resolution Enhancement
4. Nanomaterials for Biosensing
4.1. Nanoparticles for Spatial Sequencing and Proteomics
4.2. Nanomaterials for Cytometry and Lateral Flow Assays
4.3. Nanomaterials for Other Industrial Sensing Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFM | Atomic Force Microscopy |
| Ag | Silver |
| Au | Gold |
| AuNPs | Gold Nanoparticles |
| CDs | Carbon Dots |
| CNNs | Convolutional Neural Networks |
| CPL | Circularly Polarized Light |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| CT | Computed Tomography |
| DOX | Doxorubicin |
| ECOC | Error-Correcting Output Codes |
| EV-GLYPH | sEV GLYcan PHenotype |
| FISH | Fluorescence In Situ Hybridization |
| GMP | Good Manufacturing Practice |
| HIV | Human Immunodeficiency Virus |
| iQ2 | Tetrabutylammonium bis(bis(4-methoxyphenyl)dithiocarbamato)nickelate |
| LDA | Latent Dirichlet Allocation |
| LFAs | Lateral Flow Assays |
| LIG | Laser-Induced Graphene |
| LOD | Limit of Detection |
| LSPR | Localized Surface Plasmon Resonance |
| LSTM | Long Short-Term Memory |
| MALDI | Matrix-Assisted Laser Desorption Ionization |
| MERFISH | Multiplexed Error-Robust FISH |
| MetaPolarIm | Metasurface-Based Full-Stokes Polarimetric Imaging Sensor |
| MOFs | Metal–Organic Frameworks |
| MoS2 | Molybdenum Disulfide |
| MPFA | Metasurface Polarization Filter Array |
| MRI | Magnetic Resonance Imaging |
| OCT | Optical Coherence Tomography |
| PALM | Photoactivated Localization Microscopy |
| PEVD | Plasma-Enhanced Chemical Vapor Deposition |
| PI-DDPM | Physics-Informed Denoising Diffusion Probabilistic Model |
| PSF | Point Spread Function |
| PTMs | Post-Translational Modifications |
| QDs | Quantum Dots |
| QWP | Quarter-Wave Plate |
| RES | Reticuloendothelial System |
| RIE | Reactive Ion Etching |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| scRNA-seq | Single-Cell RNA Sequencing |
| SEIRAS | Surface-Enhanced Infrared Absorption Spectroscopy |
| SERRS | Surface-Enhanced Resonant Raman Scattering |
| SERS | Surface-Enhanced Raman Scattering |
| SESORS | In Vivo Imaging Using Surface-Enhanced Spatially Offset Raman Spectroscopy |
| SHG | Second-Harmonic Generation |
| SIM | Structured Illumination Microscopy |
| smFISH | Single-Molecule FISH |
| SOFI | Super-Resolution Optical Fluctuation Imaging |
| SORS | Spatially Offset Raman Spectroscopy |
| SPIONs | Superparamagnetic Iron Oxide Nanoparticles |
| SR-SIM | Super-Resolved Structured Illumination Microscopy |
| SRM | Super-Resolution Microscopy |
| SRS | Stimulated Raman Scattering |
| STED | Stimulated Emission Depletion |
| STORM | Stochastic Optical Reconstruction Microscopy |
| TERS | Tip-Enhanced Raman Scattering |
| TF-IDF | Term Frequency–Inverse Document Frequency |
| UCNPs | Upconversion Nanoparticles |
| UMAP | Uniform Manifold Projection |
| WoS | Web of Science |
References
- Fung, A.A.; Zhou, A.; Vanos, J.K.; Schmid-Schönbein, G.W. Enhanced intestinal permeability and intestinal co-morbidities in heat strain: A review and case for autodigestion. Temperature 2021, 8, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L.; Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors 2022, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M.; Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Khoshbin, Z.; Housaindokht, M.R.; Izadyar, M.; Bozorgmehr, M.R.; Verdian, A. Recent advances in computational methods for biosensor design. Biotechnol. Bioeng. 2021, 118, 555–578. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim. 2022, 1, 87. [Google Scholar] [CrossRef]
- Fung, A.A.; Shi, L. Mammalian Cell and Tissue Imaging Using Raman and Coherent Raman Microscopy. WIREs Syst. Biol. Med. 2020, 12, e1501. [Google Scholar] [CrossRef]
- Shi, L.; Fung, A.A.; Zhou, A. Advances in Stimulated Raman Scattering Imaging for Tissues and Animals. Quant. Imaging Med. Surg. 2020, 11, 1078–1101. [Google Scholar] [CrossRef]
- Rosas, S.; Biswas, S.K.; Adi, W.; Kuruoglu, F.; Beisenova, A.; Patankar, M.S.; Yesilkoy, F. Mass-Manufactured Gradient Plasmonic Metasurfaces for Enhanced Mid-IR Spectrochemical Analysis of Complex Biofluids. Adv. Mater. 2025, 37, e04355. [Google Scholar] [CrossRef]
- Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T.M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2300582121. [Google Scholar] [CrossRef]
- Jang, H.; Li, Y.; Fung, A.A.; Bagheri, P.; Hoang, K.; Skowronska-Krawczyk, D.; Chen, X.; Wu, J.Y.; Bintu, B.; Shi, L. Super-resolution SRS microscopy with A-PoD. Nat. Methods 2023, 20, 448–458. [Google Scholar] [CrossRef]
- Fung, A.A.; Li, Z.; Boote, C.; Markov, P.; Jain, S.; Shi, L. Label-Free Optical Biopsy Reveals Biomolecular and Morphological Features of Diabetic Kidney Tissue in 2D and 3D. Nat. Commun. 2024, 16, 4509. [Google Scholar] [CrossRef]
- Fung, A.A.; Shi, L. A label-free optical analysis for molecular nephrology. Nat. Rev. Nephrol. 2025, 22, 1–2. [Google Scholar] [CrossRef]
- Berndsen, Z.T.; Chakraborty, S.; Wang, X.; Cottrell, C.A.; Torres, J.L.; Diedrich, J.K.; López, C.A.; Yates, J.R.; van Gils, M.J.; Paulson, J.C.; et al. Visualization of the HIV-1 Env glycan shield across scales. Proc. Natl. Acad. Sci. USA 2020, 117, 28014–28025. [Google Scholar] [CrossRef] [PubMed]
- Grant, O.C.; Montgomery, D.; Ito, K.; Woods, R.J. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci. Rep. 2020, 10, 14991. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Kuai, D.; Park, H.; Clark, H.; Balbuena, P.B.; Kwon, J.S.-I.; Wu, H.-J. Advancing Glycan Analysis: A New Platform Integrating SERS, Boronic Acids, and Machine Learning Algorithms. Adv. Sens. Res. 2023, 2, 2300052. [Google Scholar] [CrossRef]
- Zhou, Q.; Niu, X.; Zhang, Z.; O’Byrne, K.; Kulasinghe, A.; Fielding, D.; Möller, A.; Wuethrich, A.; Lobb, R.J.; Trau, M. Glycan Profiling in Small Extracellular Vesicles with a SERS Microfluidic Biosensor Identifies Early Malignant Development in Lung Cancer. Adv. Sci. 2024, 11, e2401818. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Bhattacharya, A.; Barkey, M.; Aigner, A.; Rohrer, L.; Weber, T.; Wang, J.; Maier, S.A.; Tittl, A. A Comparative Analysis of Plasmonic and Dielectric Metasurface Sensing Platforms Powered by Bound States in the Continuum. Adv. Funct. Mater. 2025, e16021. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, L.; Raj, P.; Kim, J.H.; Paidi, S.K.; Semancik, S.; Barman, I. Multiplexed SERS Detection of Serum Cardiac Markers Using Plasmonic Metasurfaces. Adv. Sci. 2024, 11, 2405910. [Google Scholar] [CrossRef]
- Christoff-Tempesta, T.; Deiss-Yehiely, E.; Dromel, P.C.; Uliassi, L.D.; Chazot, C.A.C.; Postelnicu, E.; Hart, A.J.; Spector, M.; Hammond, P.T.; Ortony, J.H. Antifouling Surface Coatings from Self-Assembled Zwitterionic Aramid Amphiphile Nanoribbons. Adv. Mater. Interfaces 2022, 9, 2200311. [Google Scholar] [CrossRef]
- Xu, K.; Xie, H.; Sun, C.; Lin, W.; You, Z.; Zheng, G.; Zheng, X.; Xu, Y.; Chen, J.; Lin, F.; et al. Sustainable Coating Based on Zwitterionic Functionalized Polyurushiol with Antifouling and Antibacterial Properties. Molecules 2023, 28, 8040. [Google Scholar] [CrossRef]
- Ji, W.; Chang, J.; Xu, H.-X.; Gao, J.R.; Gröblacher, S.; Urbach, H.P.; Adam, A.J.L. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light. Sci. Appl. 2023, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light. Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Gu, M.; Tian, Y.; Li, C.; Zhu, M.; Zhou, H.; Fang, B.; Hong, Z.; Jing, X. Review for optical metalens based on metasurfaces: Fabrication and applications. Microsyst. Nanoeng. 2025, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chen, W.T.; Yousef, K.M.A.; Marchioni, J.; Zhu, A.; Capasso, F.; Cheng, J.-X. Coherent Raman scattering imaging with a near-infrared achromatic metalens. APL Photonics 2021, 6, 096107. [Google Scholar] [CrossRef]
- Zuo, J.; Bai, J.; Choi, S.; Basiri, A.; Chen, X.; Wang, C.; Yao, Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light. Sci. Appl. 2023, 12, 218. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, Q.; Jiang, L.; Nguyen, V.-T.; Vu, T.; Devlin, G.; Shaima, J.; Wang, X.; Chen, Y.; Ma, L.; et al. Longitudinal intravital imaging of mouse placenta. Sci. Adv. 2024, 10, eadk1278. [Google Scholar] [CrossRef]
- Ecclestone, B.R.; Hosseinaee, Z.; Abbasi, N.; Bell, K.; Dinakaran, D.; Mackey, J.R.; Haji Reza, P. Three-dimensional virtual histology in unprocessed resected tissues with photoacoustic remote sensing (PARS) microscopy and optical coherence tomography (OCT). Sci. Rep. 2021, 11, 13723. [Google Scholar] [CrossRef]
- Shi, L.; Sordillo, L.A.; Rodríguez-Contreras, A.; Alfano, R. Transmission in Near-Infrared Optical Windows for Deep Brain Imaging. J. Biophotonics 2016, 9, 38–43. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J. Design of short-wave infrared resonant Raman reporters with near-zero fluorescence background for SERRS imaging-guided elimination of bacteria biofilms. Chem. Eng. J. 2025, 522, 167185. [Google Scholar] [CrossRef]
- Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially offset Raman spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 21. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Su, Z.-T.; Lin, D.-J.; Lee, M.-X.; Chan, M.-C.; Das, S.; Kao, F.-J.; Zhuo, G.-Y. Optimizing imaging depth of anisotropic scattering tissues with polarization engineered second harmonic generation microscopy. Results Phys. 2021, 28, 104653. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light. Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Ping, Y.; Han, S.; Howerton, B.; Marti, F.; Weeks, J.; Gedaly, R.; Adatorwovor, R.; Chapelin, F. Receptor-Mediated SPION Labeling of CD4+ T Cells for Longitudinal MRI Tracking of Distribution Following Systemic Injection in Mouse. Nanomaterials 2025, 15, 1068. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, F.; Andreiuk, B.; Lee, E.; O’Donnell, B.; Whitley, A.; Riepl, N.; Burkhart, D.L.; Cameron, A.; Protti, A.; Rudder, S.; et al. In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): Balancing sampling frequency to improve overall image acquisition. npj Imaging 2024, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Minati, L.; Maniglio, D.; Benetti, F.; Chiappini, A.; Speranza, G. Multimodal Gold Nanostars as SERS Tags for Optically-Driven Doxorubicin Release Study in Cancer Cells. Materials 2021, 14, 7272. [Google Scholar] [CrossRef]
- Pan, Q.; Nie, C.; Hu, Y.; Yi, J.; Liu, C.; Zhang, J.; He, M.; He, M.; Chen, T.; Chu, X. Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. ACS Appl. Mater. Interfaces 2020, 12, 400–409. [Google Scholar] [CrossRef]
- Li, Z.; Sarikhani, E.; Prayotamornkul, S.; Meganathan, D.P.; Jahed, Z.; Shi, L. Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities. Chem. Biomed. Imaging 2024, 2, 825–834. [Google Scholar] [CrossRef]
- LaMontagne, E.; Savchenko, A.; Gonzalez, G.; Vatsyayan, R.; Martin-Burgos, B.; Puppo, F.; Biagi, D.; Papes, F.; Dayeh, S.A.; Muotri, A.R.; et al. Graphene-polymer nanofibers enable optically induced electrical responses in stem cell-derived electrically excitable cells and brain organoids. Biomaterials 2025, 323, 123430. [Google Scholar] [CrossRef]
- Oh, S.; Brammer, K.S.; Li, Y.S.J.; Teng, D.; Engler, A.J.; Chien, S.; Jin, S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 2009, 106, 2130–2135. [Google Scholar] [CrossRef]
- Beri, P.; Popravko, A.; Yeoman, B.; Kumar, A.; Chen, K.; Hodzic, E.; Chiang, A.; Banisadr, A.; Placone, J.K.; Carter, H.; et al. Cell adhesiveness serves as a biophysical marker for metastatic potential. Cancer Res. 2020, 80, 901–911. [Google Scholar] [CrossRef]
- Fung, A.A.; Fung, A.H.; Li, Z.; Shi, L. Single-Frame Vignetting Correction for Post-Stitched-Tile Imaging Using VISTAmap. Nanomaterials 2025, 15, 563. [Google Scholar] [CrossRef] [PubMed]
- Heintzmann, R.; Huser, T. Super-Resolution Structured Illumination Microscopy. Chem. Rev. 2017, 117, 13890–13908. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shroff, H. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Methods 2018, 15, 1011–1019. [Google Scholar] [CrossRef]
- Wurm, C.A.; Neumann, D.; Schmidt, R.; Egner, A.; Jakobs, S. Sample Preparation for STED Microscopy. In Live Cell Imaging; Papkovsky, D.B., Ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 185–199. [Google Scholar]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef]
- Li, C.; Liu, S.; Wang, W.; Liu, W.; Kuang, C.; Liu, X. Recent research on stimulated emission depletion microscopy for reducing photobleaching. J. Microsc. 2018, 271, 4–16. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef]
- Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795. [Google Scholar] [CrossRef]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef]
- Li, W.; Kaminski Schierle, G.S.; Lei, B.; Liu, Y.; Kaminski, C.F. Fluorescent Nanoparticles for Super-Resolution Imaging. Chem. Rev. 2022, 122, 12495–12543. [Google Scholar] [CrossRef]
- Jin, D.; Xi, P.; Wang, B.; Zhang, L.; Enderlein, J.; van Oijen, A.M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415–423. [Google Scholar] [CrossRef]
- Hanne, J.; Falk, H.J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S.J.; Hell, S.W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127. [Google Scholar] [CrossRef]
- Yang, X.; Zhanghao, K.; Wang, H.; Liu, Y.; Wang, F.; Zhang, X.; Shi, K.; Gao, J.; Jin, D.; Xi, P. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics 2016, 3, 1611–1618. [Google Scholar] [CrossRef]
- Efros, A.L.; Nesbitt, D.J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 2009, 106, 22287–22292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fruhwirth, G.; Cai, E.; Ng, T.; Selvin, P.R. 3D Super-Resolution Imaging with Blinking Quantum Dots. Nano Lett. 2013, 13, 5233–5241. [Google Scholar] [CrossRef]
- Chizhik, A.M.; Stein, S.; Dekaliuk, M.O.; Battle, C.; Li, W.; Huss, A.; Platen, M.; Schaap, I.A.T.; Gregor, I.; Demchenko, A.P.; et al. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots. Nano Lett. 2016, 16, 237–242. [Google Scholar] [CrossRef]
- He, H.; Liu, X.; Li, S.; Wang, X.; Wang, Q.; Li, J.; Wang, J.; Ren, H.; Ge, B.; Wang, S.; et al. High-Density Super-Resolution Localization Imaging with Blinking Carbon Dots. Anal. Chem. 2017, 89, 11831–11838. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Leménager, G.; Luca, E.D.; Sun, Y.-P.; Pompa, P.P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 2014, 6, 8617–8623. [Google Scholar] [CrossRef]
- Zenobi, R.; Kumar, N.; Verma, P. Spatial Resolution in Nanoscale TERS Imaging: Current Status, Challenges, and Guidelines. Nano Lett. 2025, 25, 3707–3716. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zou, H.; Fu, X.; Gu, C.; Yao, L.; Li, S.; Zhang, Q.; Gu, M. MINFLUX reveals nonnormal distribution of linkage errors in immunofluorescence labeling. Commun. Phys. 2025, 8, 253. [Google Scholar] [CrossRef]
- Peterson, C.L.; Laniel, M.-A. Histones and histone modifications. Curr. Biol. 2004, 14, R546–R551. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylova, M.; Cloin, B.M.C.; Finan, K.; van den Berg, R.; Teeuw, J.; Kijanka, M.M.; Sokolowski, M.; Katrukha, E.A.; Maidorn, M.; Opazo, F.; et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 2015, 6, 7933. [Google Scholar] [CrossRef]
- Pleiner, T.; Bates, M.; Trakhanov, S.; Lee, C.-T.; Schliep, J.E.; Chug, H.; Böhning, M.; Stark, H.; Urlaub, H.; Görlich, D. Nanobodies: Site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 2015, 4, e11349. [Google Scholar] [CrossRef]
- Schueder, F.; Mangeol, P.; Chan, E.H.; Rees, R.; Schünemann, J.; Jungmann, R.; Görlich, D.; Schnorrer, F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023, 12, e79344. [Google Scholar] [CrossRef]
- Teodori, L.; Omer, M.; Märcher, A.; Skaanning, M.K.; Andersen, V.L.; Nielsen, J.S.; Oldenburg, E.; Lin, Y.; Gothelf, K.V.; Kjems, J. Site-specific nanobody-oligonucleotide conjugation for super-resolution imaging. J. Biol. Methods 2022, 9, e159. [Google Scholar] [CrossRef]
- Kinkhabwala, A.; Herbel, C.; Pankratz, J.; Yushchenko, D.A.; Rüberg, S.; Praveen, P.; Reiß, S.; Rodriguez, F.C.; Schäfer, D.; Kollet, J.; et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 2022, 12, 1911. [Google Scholar] [CrossRef]
- Rodríguez, P. Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review. J. Electr. Comput. Eng. 2013, 2013, 217021. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, S.; Li, L.; Huang, X.; Xing, S.; Zhang, Y.; Qiu, G.; Han, Z.; Shang, Y.; Sun, D.; et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol. 2022, 40, 606–617. [Google Scholar] [CrossRef]
- Toscani, M.; Lacapmesure, A.; Vazquez, G.D.B.; Martinez, O.E.; Martinez, S.R. Assessing the Reliability of the Suppose Enhanced Deconvolution Method Applied to Different Fluorescent Imaging Techniques. Biophys. J. 2021, 120, 106a–107a. [Google Scholar] [CrossRef]
- Krull, A.; Buchholz, T.-O.; Jug, F. Noise2Void—Learning Denoising from Single Noisy Images. arXiv 2019, arXiv:1811.10980. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Gool, L.V.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. arXiv 2021, arXiv:2108.10257. [Google Scholar] [CrossRef]
- Shah, Z.H.; Müller, M.; Hübner, W.; Wang, T.-C.; Telman, D.; Huser, T.; Schenck, W. Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data. GigaScience 2024, 13, giad109. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; della Maggiora, G.; Andriasyan, V.; Petkidis, A.; Yushkevich, A.; Deshpande, N.; Kudryashev, M.; Yakimovich, A. Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model. Commun. Eng. 2024, 3, 186. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.G.J.; Wiegant, J.; Borst, P.; van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome-labelled RNA. Exp. Cell Res. 1980, 128, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Rudkin, G.T.; Stollar, B.D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 1977, 265, 472–473. [Google Scholar] [CrossRef]
- Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of single RNA transcripts in situ. Science 1998, 280, 585–590. [Google Scholar] [CrossRef]
- Lubeck, E.; Coskun, A.F.; Zhiyentayev, T.; Ahmad, M.; Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 2014, 11, 360–361. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef]
- Visium Spatial Platform. 10x Genomics. Available online: https://www.10xgenomics.com/platforms/visium (accessed on 6 November 2025).
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Stickels, R.R.; Murray, E.; Kumar, P.; Li, J.; Marshall, J.L.; Di Bella, D.J.; Arlotta, P.; Macosko, E.Z.; Chen, F. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 2021, 39, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Vickovic, S.; Eraslan, G.; Salmén, F.; Klughammer, J.; Stenbeck, L.; Schapiro, D.; Äijö, T.; Bonneau, R.; Bergenstråhle, L.; Navarro, J.F.; et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 2019, 16, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Agudelo Garcia, P.A.; Aliferis, C.; Becich, M.J.; Calyeca, J.; Cosgrove, B.D.; Elisseeff, J.; Farzad, N.; Fertig, E.J.; Glass, C.; et al. Advancing biological understanding of cellular senescence with computational multiomics. Nat. Gen. 2025, 57, 2381–2394. [Google Scholar] [CrossRef]
- Li, H.; Bao, S.; Farzad, N.; Qin, X.; Fung, A.A.; Zhang, D.; Bai, Z.; Tao, B.; Fan, R. Spatially resolved genome-wide joint profiling of epigenome and transcriptome with spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq. Nat. Protoc. 2025, 20, 2383–2417. [Google Scholar] [CrossRef]
- Miao, Z.; Humphreys, B.D.; McMahon, A.P.; Kim, J. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 2021, 17, 710–724. [Google Scholar] [CrossRef]
- Omidfar, K.; Riahi, F.; Kashanian, S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. Biosensors 2023, 13, 837. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Álvarez-Diduk, R.; Parolo, C.; Piper, A.; Merkoçi, A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem. Rev. 2022, 122, 14881–14910. [Google Scholar] [CrossRef]
- Han, Q.; Fan, L.; Liu, X.; Tang, Y.; Wang, P.; Shu, Z.; Zhang, W.; Zhu, L. Lateral Flow Immunoassay Based on Quantum-Dot Nanobeads for Detection of Chloramphenicol in Aquatic Products. Molecules 2023, 28, 7496. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, S.; Khan, J.U.; Liu, Y.; Maddahfar, M.; Zhou, J.; Jin, D. Ultrasensitive Rapid Antigen Test by Geometric Lateral Flow Assays and Highly Doped Upconversion Nanoparticles. Anal. Chem. 2024, 96, 16581–16589. [Google Scholar] [CrossRef]
- Shlyapnikov, Y.M.; Shlyapnikova, E.A. Ultrasensitive Bead-Based Immunoassay for Real-Time Continuous Sample Flow Analysis. Biosensors 2025, 15, 316. [Google Scholar] [CrossRef]
- Lamprou, E.; Kalligosfyri, P.M.; Kalogianni, D.P. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. Biosensors 2025, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Lei, C.; Liu, Y.; Song, H.; Kong, Y.; Wan, J.; Yu, C. Rational Design of Dendritic Mesoporous Silica Nanoparticles’ Surface Chemistry for Quantum Dot Enrichment and an Ultrasensitive Lateral Flow Immunoassay. ACS Appl. Mater. Interfaces 2021, 13, 21507–21515. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yu, J.; Song, Y. Ultrasensitive lateral flow immunoassay for staphylococcal enterotoxin B using nanosized fluorescent metal–organic frameworks. Nanoscale 2022, 14, 16994–17002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, C.; Qian, S.; Li, H.; Fu, P.; Zhou, H.; Zheng, J. An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chem. 2023, 399, 133970. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, S.; Fang, B.; Zhang, G.; Lai, X.; Su, L.; He, W.; Lai, W. Lateral flow immunoassay based on polydopamine-coated metal-organic framework for the visual detection of enrofloxacin in milk. Anal. Bioanal. Chem. 2022, 414, 7315–7323. [Google Scholar] [CrossRef]
- Bu, T.; Jia, P.; Sun, X.; Liu, Y.; Wang, Q.; Wang, L. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples. Sens. Actuators B Chem. 2020, 320, 128440. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Peng, Y.; Long, L.; Li, Y.; Huang, Z.; Long, N.V.; Luo, X.; Liu, J.; Li, Z.; et al. Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets. Nano-Micro Lett. 2022, 14, 75. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Liu, M.; Liu, Y. 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens. Bioelectron. 2021, 171, 112730. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, S.; Lin, C.; Li, Y.; Zhang, W.; Peng, Y.; Xiao, R.; Huang, Z.; Yang, Y. Dual-Mode Lateral Flow Immunoassay Based on “Pompon Mum”-Like Fe3O4@MoS2@Pt Nanotags for Sensitive Detection of Viral Pathogens. ACS Appl. Mater. Interfaces 2024, 16, 11172–11184. [Google Scholar] [CrossRef]
- Han, G.-R.; Koo, H.J.; Ki, H.; Kim, M.-G. Paper/Soluble Polymer Hybrid-Based Lateral Flow Biosensing Platform for High-Performance Point-of-Care Testing. ACS Appl. Mater. Interfaces 2020, 12, 34564–34575. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Sheng, W.; Wen, W.; Gu, Y.; Wang, S. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Mikrochim. Acta 2018, 185, 388. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, J.; Zhen, Y.; Xu, C.; Li, Q.; Zhao, S. Perovskite Quantum Dot/Mesoporous Silica Nanoparticles Loaded with Osmium Nanozymes for Fluorescent and Colorimetric Dual-Mode Lateral Flow Immunoassay of Salmonella enterica Serovar Typhimurium. ACS Appl. Nano Mater. 2025, 8, 19497–19507. [Google Scholar] [CrossRef]
- Wegner, K.D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lin, Q.; Chang, H.-T. Recent Advances and Sensing Applications of Carbon Dots. Small Methods 2020, 4, 1900387. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent Advances of Plasmonic Nanoparticles and their Applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef]
- Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; García-Martín, M.L. Magnetic Nanoparticles as MRI Contrast Agents. Top. Curr. Chem. 2020, 378, 40. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Sohrabi, H.; Maleki, F.; Khaaki, P.; Kadhom, M.; Kudaibergenov, N.; Khataee, A.; Sohrabi, H.; Maleki, F.; Khaaki, P.; Kadhom, M.; et al. Electrochemical-Based Sensing Platforms for Detection of Glucose and H2O2 by Porous Metal–Organic Frameworks: A Review of Status and Prospects. Biosensors 2023, 13, 347. [Google Scholar] [CrossRef]
- Ghaffari, R.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; Baker, L.B. The Gx Sweat Patch for personalized hydration management. Nat. Rev. Bioeng. 2023, 1, 5–7. [Google Scholar] [CrossRef]
- Ehtesabi, H.; Kalji, S.-O. Carbon nanomaterials for sweat-based sensors: A review. Microchim. Acta 2024, 191, 77. [Google Scholar] [CrossRef]
- What Material Is the Dexcom Filament and Insertion Needle Made from? Dexcom. Available online: https://www.dexcom.com/en-gb/faqs/what-material-is-the-dexcom-filament-and-insertion-needle-made-from (accessed on 10 December 2025).
- Zhu, J.; Liu, S.; Hu, Z.; Zhang, X.; Yi, N.; Tang, K.; Dexheimer, M.G.; Lian, X.; Wang, Q.; Yang, J.; et al. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 2021, 193, 113606. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wu, Y.; Zhao, Y.; Jing, W.; Zheng, K.; Wang, C.; Wang, S.; Zhang, Y.; Dong, T.; Jiang, Z. Superior sensitive graphene fiber sensor enabled by constructing multiple nanoembossments for glucose detection. Microsyst. Nanoeng. 2025, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Brasier, N.; Wang, J.; Gao, W.; Sempionatto, J.R.; Dincer, C.; Ates, H.C.; Güder, F.; Olenik, S.; Schauwecker, I.; Schaffarczyk, D.; et al. Applied body-fluid analysis by wearable devices. Nature 2024, 636, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Govedarica, M.; Milosevic, I.; Jankovic, V.; Mitrovic, R.; Kundacina, I.; Nastasijevic, I.; Radonic, V.; Govedarica, M.; Milosevic, I.; Jankovic, V.; et al. A Cost-Effective and Rapid Manufacturing Approach for Electrochemical Transducers with Magnetic Beads for Biosensing. Micromachines 2025, 16, 343. [Google Scholar] [CrossRef]
- Sun, A.R.; Ramli, M.F.H.; Shen, X.; Kannivadi Ramakanth, K.; Chen, D.; Hu, Y.; Vidyasekar, P.; Foo, R.S.; Long, Y.; Zhu, J.; et al. Hybrid hydrogel–extracellular matrix scaffolds identify biochemical and mechanical signatures of cardiac ageing. Nat. Mater. 2025, 24, 1489–1501. [Google Scholar] [CrossRef]
- Fung, A.A.; Khang, H.; Zha, H.; Chen, D.; Zhang, W.; Shi, L. Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism. Front. Oncol. 2022, 12, 858017. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Fung, A.A.; Shi, L. DO-SRS Imaging of Diet Regulated Metabolic Activities in Drosophila during Aging Processes. Aging Cell 2022, 21, e13586. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Fung, A.A.; Shi, L. DO-SRS Imaging of Metabolic Dynamics in Aging Drosophila. Analyst 2021, 146, 7510–7519. [Google Scholar] [CrossRef]
- Li, Y.; Bagheri, P.; Chang, P.; Zeng, A.; Hao, J.; Fung, A.A.; Wu, J.Y.; Shi, L. Direct Imaging of Lipid Metabolic Changes in Drosophila Ovary During Aging Using DO-SRS Microscopy. Front. Aging 2022, 2, 819903. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, X.; Fung, A.H.; Luka, G.; Fung, A.A. Interdisciplinary Nanomaterials for Biomedical Imaging and Sensing Applications. Nanomaterials 2026, 16, 21. https://doi.org/10.3390/nano16010021
Chen X, Fung AH, Luka G, Fung AA. Interdisciplinary Nanomaterials for Biomedical Imaging and Sensing Applications. Nanomaterials. 2026; 16(1):21. https://doi.org/10.3390/nano16010021
Chicago/Turabian StyleChen, Xinyu, Ashley H. Fung, George Luka, and Anthony A. Fung. 2026. "Interdisciplinary Nanomaterials for Biomedical Imaging and Sensing Applications" Nanomaterials 16, no. 1: 21. https://doi.org/10.3390/nano16010021
APA StyleChen, X., Fung, A. H., Luka, G., & Fung, A. A. (2026). Interdisciplinary Nanomaterials for Biomedical Imaging and Sensing Applications. Nanomaterials, 16(1), 21. https://doi.org/10.3390/nano16010021

