Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pang, J.; Peng, S.; Hou, C.; Wang, X.; Wang, T.; Cao, Y.; Zhou, W.; Sun, D.; Wang, K.; Rümmeli, M.; et al. Applications of MXenes in human-like sensors and actuators. Nano Res. 2023, 16, 5767–5795. [Google Scholar]
- Di Liberto, G.M.; O’sullivan, J.A.; Lalor, E.C. Low-frequency cortical entrainment to speech reflects phoneme-level processing. Curr. Biol. 2015, 25, 2457–2465. [Google Scholar] [CrossRef] [PubMed]
- Kell, A.J.E.; Yamins, D.L.K.; Shook, E.N.; Norman-Haignere, S.V.; McDermott, J.H. A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 2018, 98, 630–644.e16. [Google Scholar] [CrossRef] [PubMed]
- Tichacek, O.; Mistrík, P.; Jungwirth, P. From the outer ear to the nerve: A complete computer model of the peripheral auditory system. Hear. Res. 2023, 440, 108900. [Google Scholar] [CrossRef]
- Yun, S.Y.; Han, J.K.; Lee, S.W.; Yu, J.M.; Jeon, S.B.; Choi, Y.K. Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware. Nano Energy 2023, 109, 108322. [Google Scholar] [CrossRef]
- Liu, Y.; Li, E.; Wang, X.; Chen, Q.; Zhou, Y.; Hu, Y.; Chen, G.; Chen, H.; Guo, T. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 2020, 78, 105403. [Google Scholar] [CrossRef]
- Escudero, E.C.; Peña, F.P.; Vicente, R.P.; Jimenez-Fernandez, A.; Moreno, G.J.; Morgado-Estevez, A. Real-time neuro-inspired sound source localization and tracking architecture applied to a robotic platform. Neurocomputing 2018, 283, 129–139. [Google Scholar] [CrossRef]
- Grothe, B.; Pecka, M.; McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 2010, 90, 983–1012. [Google Scholar] [CrossRef]
- Wang, Y.; Mandal, S. Bioinspired radio-frequency source localization based on cochlear cross-correlograms. Front. Neurosci. 2021, 15, 623316. [Google Scholar]
- Wang, Y.; Mendis, G.J.; Wei-Kocsis, J.; Madanayake, A.; Mandal, S. A 1.0–8.3 GHz cochlea-based real-time spectrum analyzer with Δ-Σ-modulated digital outputs. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2934–2947. [Google Scholar] [CrossRef]
- Xu, Y.; Afshar, S.; Wang, R.; Thakur, C.S.; van Schaik, A. A biologically inspired sound localization system using a silicon cochlea pair. Appl. Sci. 2021, 11, 1519. [Google Scholar] [CrossRef]
- Nguyen, D.; Aarabi, P.; Sheikholeslami, A. Real-time sound localization using field-programmable gate arrays. In Proceedings of the 2003 International Conference on Multimedia and Expo (ICME’03), Baltimore, MD, USA, 6–9 July 2003; IEEE: New York, NY, USA; Volume 2, pp. II-829–II-832. [Google Scholar]
- Jungdong, J. Real-time sound localization using generalized cross correlation based on 0.13 μm CMOS process. J. Semicond. Technol. Sci. 2014, 14, 175–183. [Google Scholar]
- Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.F.; Yoo, H.J.; He, Q.; Wu, H. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Xi, Y.; Gao, B.; Tang, J.; Chen, A.; Chang, M.F.; Hu, X.S.; Van Der Spiegel, J.; He, Q.; Wu, H. In-Memory Learning with Analog Resistive Switching Memory: A Review and Perspective. Proc. IEEE 2020, 109, 1–29. [Google Scholar] [CrossRef]
- Gao, S.; Liu, G.; Chen, Q.; Xue, W.; Yang, H.; Shang, J.; Chen, B.; Zeng, F.; Song, C.; Pan, F.; et al. Improving unipolar resistive switching uniformity with cone-shaped conducting filaments and its logic-in-memory application. ACS Appl. Mater. Interfaces 2018, 10, 6453–6462. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Su, W.; Wen, D. Nonvolatile Bioresistive Random Access Memory Based on Glycine max and Graphene Oxide. ACS Appl. Electron. Mater. 2023, 5, 5814–5822. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Zuo, Z.; Wen, D. Full-function logic circuit based on egg albumen resistive memory. Appl. Phys. Lett. 2022, 121, 243505. [Google Scholar] [CrossRef]
- Wang, L.; Wei, S.; Xie, J.; Wen, D. Bioartificial Synapses for Neuromorphic Computing. ACS Sustain. Chem. Eng. 2023, 11, 2229–2237. [Google Scholar] [CrossRef]
- Wang, L.; Xie, J.; Wen, D. Forming-free plant resistive random access memory based on the Coulomb blockade effect produced by gold nanoparticles. Phys. Chem. Chem. Phys. 2023, 25, 18132–18138. [Google Scholar] [CrossRef]
- Kumar, S.; Davila, N.; Wang, Z.; Huang, X.; Strachan, J.P.; Vine, D.; Kilcoyne, D.A.L.; Nishibayashi, Y.; Williams, R.S. Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors. Nanoscale 2017, 9, 1793–1798. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Agarwal, T.; Jain, A.; Taniguchi, T.; Watanabe, K.; Luisier, M.; Emboras, A.; Novotny, L. Ion Migration in Monolayer Mo S 2 Memristors. Phys. Rev. Appl. 2022, 18, 014018. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Su, W.; Wen, D. Photoelectric biomemristors for artificial visual perception systems. Appl. Mater. Today 2023, 35, 101964. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.; Li, J.; Wen, D. Realization of artificial synapses using high-performance soybean resistive memory. J. Alloys Compd. 2023, 953, 170119. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.; Li, J.; Wen, D. Full Hardware Image Encryption for Oscillating Memristor Circuits. Adv. Mater. Technol. 2023, 8, 2201540. [Google Scholar] [CrossRef]
- Vidiš, M.; Plecenik, T.; Moško, M.; Tomašec, S.; Roch, T.; Satrapinskyy, L.; Grančič, B.; Plecenik, A. Gasistor: A memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 2019, 115, 093504. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, D.; Zhao, Y.; Chiang, F.K.; Chen, P.; Guo, M.; Luo, N.; Jiang, X.; Miao, P.; Sun, Y. Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO. Nanoscale 2015, 7, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, J.; Chen, J.; Gao, L.; Yang, C.; Guo, T.; Zhao, Y.; Xiao, Y.; Wang, J.; Li, Y. High-performance memristor based on MoS2 for reliable biological synapse emulation. Mater. Today Commun. 2022, 32, 103957. [Google Scholar] [CrossRef]
- Wang, T.Y.; Meng, J.L.; Li, Q.X.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 2021, 60, 21–26. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, X.; Wang, T.; Shi, X.; Liu, Y.; Zuo, Y.; Xu, L.; Wang, M.; Hu, X.; Yang, X. Robust DNA-Bridged Memristor for Textile Chips. Angew. Chem. Int. Ed. 2020, 59, 12762–12768. [Google Scholar] [CrossRef]
- Qi, M.; Cao, S.; Yang, L.; Qi, Y.; Shi, L.; Wu, Z. Uniform multilevel switching of graphene oxide-based RRAM achieved by embedding with gold nanoparticles for image pattern recognition. Appl. Phys. Lett. 2020, 116, 163503. [Google Scholar] [CrossRef]
- Ahn, M.; Park, Y.; Lee, S.H.; Chae, S.; Lee, J.; Heron, J.T.; Kioupakis, E.; Lu, W.D.; Phillips, J.D. Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High-Entropy Oxides. Adv. Electron. Mater. 2021, 7, 2001258. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; Moon, J.; Yoo, S.; Wang, Y.H.; Chen, W.C. Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small 2020, 16, 2003964. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, S.; Chen, W.; Fan, F.; Liu, G. Organic memory and memristors: From mechanisms, materials to devices. Adv. Electron. Mater. 2021, 7, 2100432. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, C.; Du, D.; Xiang, J.; Yao, S.; Hu, E.; Liu, S.; Tong, Y.; Wong, W.Y.; Zhao, Q. Donor–acceptor metallopolymers containing ferrocene for brain inspired memristive devices. Adv. Electron. Mater. 2020, 6, 2000841. [Google Scholar] [CrossRef]
- Majumdar, S.; Tan, H.; Pande, I.; Van Dijken, S. Crossover from synaptic to neuronal functionalities through carrier concentration control in Nb-doped SrTiO3-based organic ferroelectric tunnel junctions. APL Mater. 2019, 7, 091114. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Li, Y.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Park, H.L.; Kim, M.H.; Kim, H.; Lee, S.H. Self-Selective Organic Memristor by Engineered Conductive Nanofilament Diffusion for Realization of Practical Neuromorphic System. Adv. Electron. Mater. 2021, 7, 2100299. [Google Scholar] [CrossRef]
- Mao, J.Y.; Zhou, L.; Ren, Y.; Yang, J.Q.; Chang, C.L.; Lin, H.C.; Chou, H.H.; Zhang, S.R.; Zhou, Y.; Han, S.T. A bioinspired electronic synapse using solution processable organic small molecule. J. Mater. Chem. C 2019, 7, 1491–1501. [Google Scholar] [CrossRef]
- Huang, W.Y.; Chang, Y.C.; Sie, Y.F.; Yu, C.R. Biocellulose substrate for fabricating fully biodegradable resistive random access devices. ACS Appl. Polym. Mater. 2021, 3, 4478–4484. [Google Scholar] [CrossRef]
- Sun, W.J.; Zhao, Y.Y.; Zhou, J.; Cheng, X.F.; He, J.H.; Lu, J.M. One-Step Fabrication of Bio-Compatible Coordination Complex Film on Diverse Substrates for Ternary Flexible Memory. Chem. A Eur. J. 2019, 25, 4808–4813. [Google Scholar] [CrossRef]
- Satapathi, S.; Raj, K.; Afroz, M.A. Halide-perovskite-based memristor devices and their application in neuromorphic computing. Phys. Rev. Appl. 2022, 18, 017001. [Google Scholar] [CrossRef]
- Kumar, M.; Ban, D.K.; Kim, S.M.; Kim, J.; Wong, C.P. Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 2019, 5, 1900467. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, S.; Niu, Q.; Han, F.; Zhang, Y. Intrinsically ionic conductive nanofibrils for ultrathin biomemristor with low operating voltage. Sci. China Mater. 2022, 65, 3096–3104. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Li, D.; Wang, R.; Li, F.; Wu, M.; Liang, K.; Ren, H.; Zheng, X.; Guo, C. Silk protein based volatile threshold switching memristors for neuromorphic computing. Adv. Electron. Mater. 2022, 8, 2101139. [Google Scholar] [CrossRef]
- Rong, H.; Zhang, M.; Liang, X.; Liu, C.; Saadi, M.; Chen, X.; Yao, L.; Zhang, Y.; He, N.; Hu, E. Demonstration of electronic synapses using a sericin-based biomemristor. Appl. Phys. Express 2023, 16, 031007. [Google Scholar] [CrossRef]
- Raeis-Hosseini, N.; Georgiadou, D.G.; Papavassiliou, C. High on/off ratio carbon quantum dot–chitosan biomemristors with coplanar nanogap electrodes. ACS Appl. Electron. Mater. 2022, 5, 138–145. [Google Scholar] [CrossRef]
- Saha, M.; Nawaz, S.M.; Keshari, B.K.; Mallik, A.N. Natural-casein-based biomemristor with pinched current–voltage characteristics. ACS Appl. Bio Mater. 2022, 5, 833–840. [Google Scholar] [CrossRef]
- Hussain, T.; Abbas, H.; Youn, C.; Lee, H.; Boynazarov, T.; Ku, B.; Jeon, Y.R.; Han, H.; Lee, J.H.; Choi, C. Cellulose nanocrystal based Bio-Memristor as a green artificial synaptic device for neuromorphic computing applications. Adv. Mater. Technol. 2022, 7, 2100744. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Chen, X.; Zeng, W.; Yang, J.; Zhao, Y. Sound Source Localization Based on Interaural Time Difference Using a Biologically Inspired Cochlear Model. Appl. Sci. 2021, 11, 1519. [Google Scholar]
- Wang, W.; Yin, X.; Zhao, H.; Liang, Y. Cochlear-Inspired Neural Cross-Correlogram Architecture for Sound Localization. Front. Neurosci. 2021, 15, 623316. [Google Scholar]
- Wang, S.; Song, Y.; Wang, Y.; Yang, Y.; Wei, Y.; Liu, X.; Hu, X. A Biologically Inspired Cochlear Nucleus Neural Network for Sound Source Localization Using ITD Cues. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2934–2947. [Google Scholar] [CrossRef]
- Wang, L.; Wen, D. Nonvolatile Bio-Memristor Based on Silkworm Hemolymph Proteins. Sci. Rep. 2017, 7, 17418. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Z.; Liu, Y.; Yang, H.; Guo, S.; Liu, Z.; Hu, X. The Role of Egg Albumin Membranes in the Electronic Properties of Resistive Switching Devices. Nanomaterials 2021, 11, 1943. [Google Scholar]
- Moon, T.; Soh, K.; Kim, J.S.; Yang, J.J.; Yoon, J.H. Leveraging volatile memristors in neuromorphic computing: From materials to system implementation. Mater. Horiz. 2024, 11, 4840–4866. [Google Scholar] [CrossRef]
- Shi, C.; Park, Y.; Bae, Y.; Lee, S. Multiparametric AFM insights into electron transport mechanisms in biomemristors. Mater. Today Phys. 2024, 44, 101429. [Google Scholar] [CrossRef]
Device Structure | Switching Current Ratio | Retention Time (s) | Durability (times) | Threshold Voltage (V) | Synaptic Behavior | References |
---|---|---|---|---|---|---|
Ag/SA:Au NPs/ITO | 104 | 104 | 100 | VSET = 1.02 VRESET = −2.84 | Enhancement and suppression EPSC, PPF, LTP, SRDP, STDP | This paper |
Ag/SNFs/ITO | 102 | 105 | 180 | VSET = 0.1~0.2 VRESET = −0.2~−0.1 | “AND” and “OR” | 44 |
Au/silk:AgNO3/Ag | 3 × 106 | 103 | 100 | / | STP PPF | 45 |
Ag/sericin/W | 100 | / | 400 | VSET = 0.25 | SRDP STDP | 46 |
Al/CQD−chitosan/Au | 106 | 104 | 160 | VSET = 0.75 VRESET = −1 | / | 47 |
Al/NaCas/ITO | 20 | 105 | 180 | / | / | 48 |
Ag/AgNPs-TCNC/FTO | 104 | 104 | 200 | VSET = 0.2 VRESET = −0.2 | LTP, LTD, EPSC, SRDP, PPF, PPD, PTP | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xie, J.; Su, W.; Du, Z.; Zhang, M. Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function. Nanomaterials 2025, 15, 659. https://doi.org/10.3390/nano15090659
Wang L, Xie J, Su W, Du Z, Zhang M. Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function. Nanomaterials. 2025; 15(9):659. https://doi.org/10.3390/nano15090659
Chicago/Turabian StyleWang, Lu, Jiachu Xie, Wantao Su, Zhenjie Du, and Mingzhu Zhang. 2025. "Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function" Nanomaterials 15, no. 9: 659. https://doi.org/10.3390/nano15090659
APA StyleWang, L., Xie, J., Su, W., Du, Z., & Zhang, M. (2025). Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function. Nanomaterials, 15(9), 659. https://doi.org/10.3390/nano15090659