Electrolyte Effect on Electrocatalytic CO2 Reduction
Abstract
1. Introduction
2. Reaction Pathway
3. pH Effects
4. Cation Effects
5. Anion Effects
6. Summary and Outlook
- The configuration of reaction intermediates significantly influences the product formation, and exploring the universality of pathways remains a key focus.
- The local pH of the electrolyte not only affects the source of protons but also regulates intermediates.
- Cations significantly affect the kinetics and selectivity of CO2RR through non-covalent interactions, buffering the interface pH, and stabilizing intermediates.
- Anions alter the reaction rate and product distribution by regulating local pH, catalyst surface reconstruction, and the adsorption/desorption processes of intermediates.
- The interaction mechanisms between the effects of cations and anions are not yet fully understood, particularly in complex electrolyte systems, making it difficult to isolate and analyze individual contributions.
- The stability of CO2RR in acidic electrolytes remains a significant issue, as catalyst dissolution and dynamic changes in the local microenvironment require further investigation.
- The formation pathways of multi-carbon products are intricate, necessitating a combination of advanced experimental techniques and theoretical calculations to elucidate the underlying reaction mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DuanMu, J.-W.; Gao, F.-Y.; Gao, M.-R. A Critical Review of Operating Stability Issues in Electrochemical CO2 Reduction. Sci. China Mater. 2024, 67, 1721–1739. [Google Scholar] [CrossRef]
- Zhu, Y.-Z.; Wang, K.; Zheng, S.-S.; Wang, H.-J.; Dong, J.-C.; Li, J.-F. Application and development of electrochemical spectroscopy methods. Acta Phys.-Chim. Sin. 2024, 40, 2304040. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Cao, X.; Wang, Z.; Zhang, N.; Liu, T. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2. Acta Phys. Chim. Sin. 2023, 39, 2210053. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Y.; Jin, S.; Yang, Y.; Zhu, J.; Li, X.; Lv, X.; Fu, J.; Hong, Z.; Su, Y.; et al. Customizing CO2 Electroreduction by Pulse-Induced Anion Enrichment. J. Am. Chem. Soc. 2023, 145, 26213–26221. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Zhang, Q.; Teng, F.; McLellan, B.C. A Critical Review on Deployment Planning and Risk Analysis of Carbon Capture, Utilization, and Storage (CCUS) toward Carbon Neutrality. Renew. Sustain. Energy Rev. 2022, 167, 112537. [Google Scholar] [CrossRef]
- Dutta, N.; Bagchi, D.; Chawla, G.; Peter, S.C. A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction. ACS Energy Lett. 2024, 9, 323–328. [Google Scholar] [CrossRef]
- Jiao, J.; Kang, X.; Yang, J.; Jia, S.; Chen, X.; Peng, Y.; Chen, C.; Xing, X.; Chen, Z.; He, M.; et al. Lattice Strain Engineering Boosts CO2 Electroreduction to C2+ Products. Angew. Chem. Int. Ed. 2024, 63, e202409563. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Y.; Li, X.; Davey, K.; Zheng, Y.; Jiao, Y.; Qiao, S.-Z. C2+ Selectivity for CO2 Electroreduction on Oxidized Cu-Based Catalysts. J. Am. Chem. Soc. 2023, 145, 14335–14344. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, W.; Wang, B.; Ling, L.; Zhang, R. CO2 Activation and Conversion on Cu Catalysts: Revealing the Role of Cu Surface Defect Types in Tuning the Activity and Selectivity. Fuel 2022, 313, 122686. [Google Scholar] [CrossRef]
- Song, X.; Xiong, W.; He, H.; Si, D.; Lü, L.; Peng, Y.; Jiang, Q.; Wang, Y.; Zheng, Y.; Nan, Z.-A.; et al. Boosting CO2 Electrocatalytic Reduction to Ethylene via Hydrogen-Assisted C-C Coupling on Cu2O Catalysts Modified with Pd Nanoparticles. Nano Energy 2024, 122, 109275. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, S.; Zhao, K.; Su, Y.; Yang, Y.; Huang, K.; He, Z. Activating *CO by Strengthening Fe–CO Π-backbonding to Enhance Two-carbon Products Formation toward CO2 Electroreduction on Fe–N4 Sites. Adv. Funct. Mater. 2024, 34, 2402537. [Google Scholar] [CrossRef]
- Su, S.; Zhou, Y.; Xiong, L.; Jin, S.; Du, Y.; Zhu, M. Structure-activity Relationships of the Structural Analogs Au8Cu1 and Au8Ag1 in the Electrocatalytic CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2024, 136, e202404629. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Sun, Z.; Zhai, H.; Li, S.; Chen, W. Sulfur Modified Carbon-based Single-atom Catalysts for Electrocatalytic Reactions. Small 2024, 20, 2401900. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, X.; Ma, T.; Fan, J.; Lai, X.; Liu, Y. Enhanced Conversion of CO2 into C2H4 on Single Atom Cu-Anchored Graphitic Carbon Nitride: Synergistic Diatomic Active Sites Interaction. J. Colloid Interface Sci. 2024, 667, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E.G.; Rasouli, A.S.; Li, Y.C.; et al. A Metal-Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nat. Commun. 2022, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, S.; Xu, Q. Efficient Strategies for Promoting the Electrochemical Reduction of CO2 to C2+ Products over Cu-Based Catalysts. Chin. J. Catal. 2023, 48, 32–65. [Google Scholar] [CrossRef]
- Liu, C.; Gong, J.; Gao, Z.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Regulation of the Activity, Selectivity, and Durability of Cu-Based Electrocatalysts for CO2 Reduction. Sci. China Chem. 2021, 64, 1660–1678. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef]
- Chu, M.; Chen, C.; Wu, Y.; Yan, X.; Jia, S.; Feng, R.; Wu, H.; He, M.; Han, B. Enhanced CO2 Electroreduction to Ethylene via Strong Metal-Support Interaction. Green Energy Environ. 2022, 7, 792–798. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Huang, L.; Su, J.; Li, G.; Zhang, Q.; Xin, Y.; Cao, X.; Guo, W.; Dou, Y.; et al. Constructing Ionic Interfaces for Stable Electrochemical CO2 Reduction. ACS Nano 2024, 18, 14020–14028. [Google Scholar] [CrossRef]
- Hou, J.; Xu, B.; Lu, Q. Influence of Electric Double Layer Rigidity on CO Adsorption and Electroreduction Rate. Nat. Commun. 2024, 15, 1926. [Google Scholar] [CrossRef]
- Gebbie, M.A.; Liu, B.; Guo, W.; Anderson, S.R.; Johnstone, S.G. Linking Electric Double Layer Formation to Electrocatalytic Activity. ACS Catal. 2023, 13, 16222–16239. [Google Scholar] [CrossRef]
- Xu, A.; Govindarajan, N.; Kastlunger, G.; Vijay, S.; Chan, K. Theories for Electrolyte Effects in CO2 Electroreduction. Acc. Chem. Res. 2022, 55, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.E.; Li, F.; Ozden, A.; Sedighian Rasouli, A.; García De Arquer, F.P.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; et al. CO2 Electrolysis to Multicarbon Products in Strong Acid. Science 2021, 372, 1074–1078. [Google Scholar] [CrossRef]
- Schreier, M.; Yoon, Y.; Jackson, M.N.; Surendranath, Y. Competition between H and CO for Active Sites Governs Copper-mediated Electrosynthesis of Hydrocarbon Fuels. Angew. Chem. Int. Ed. 2018, 57, 10221–10225. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Bu, H.; Tao, S.; Ma, M. Determination of Local pH in CO2 Electroreduction. Nanoscale 2024, 16, 3926–3935. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-J.; Choi, H.; Ringe, S.; Won, D.H.; Oh, H.-S.; Kim, D.H.; Lee, T.; Nam, D.-H.; Kim, H.; Choi, C.H. A Unifying Mechanism for Cation Effect Modulating C1 and C2 Productions from CO2 Electroreduction. Nat. Commun. 2022, 13, 5482. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, Z.; Gao, W.; Xiao, H.; Xu, B. Cation Effect on the Elementary Steps of the Electrochemical CO Reduction Reaction on Cu. Nat. Catal. 2024, 7, 1120–1129. [Google Scholar] [CrossRef]
- Qin, X.; Vegge, T.; Hansen, H.A. Cation-Coordinated Inner-Sphere CO2 Electroreduction at Au–Water Interfaces. J. Am. Chem. Soc. 2023, 145, 1897–1905. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, M.; Jiao, Z.; Han, S.; Xiong, L.; Deng, Z.; Peng, Y. Effect of Electrolyte Cation-Mediated Mechanism on Electrocatalytic Carbon Dioxide Reduction. Chin. Chem. Lett. 2024, 35, 109049. [Google Scholar] [CrossRef]
- Monteiro, M.C.O.; Dattila, F.; López, N.; Koper, M.T.M. The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2 Reduction on Gold Electrodes. J. Am. Chem. Soc. 2022, 144, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-C.; Senanayake, S.D.; Zhang, Y.; Xu, W.; Polyansky, D.E. Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO2 Electroreduction. ACS Catal. 2015, 5, 5349–5356. [Google Scholar] [CrossRef]
- Tripkovic, D.V.; Strmcnik, D.; Van Der Vliet, D.; Stamenkovic, V.; Markovic, N.M. The Role of Anions in Surface Electrochemistry. Faraday Discuss. 2009, 140, 25–40. [Google Scholar] [CrossRef]
- Masana, J.J.; Peng, B.; Shuai, Z.; Qiu, M.; Yu, Y. Influence of Halide Ions on the Electrochemical Reduction of Carbon Dioxide over a Copper Surface. J. Mater. Chem. A 2022, 10, 1086–1104. [Google Scholar] [CrossRef]
- Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catal. 2022, 12, 331–362. [Google Scholar] [CrossRef]
- Lv, J.; Yin, R.; Zhou, L.; Li, J.; Kikas, R.; Xu, T.; Wang, Z.; Jin, H.; Wang, X.; Wang, S. Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction. Angew. Chem. 2022, 134, e202207252. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, Y.; He, R.; Xu, N.; Qiao, J. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction. Acta Phys. Chim. Sin. 2023, 10, 2302037. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, Y.-F.; Xiao, H.; Li, J. Selective CO2-to-HCOOH Electroreduction on Graphdiyne-Supported Bimetallic Single-Cluster Catalysts. ACS Catal. 2024, 14, 10510–10518. [Google Scholar] [CrossRef]
- Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T.-K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et al. Boosting CO2 Electroreduction to CH4 via Tuning Neighboring Single-Copper Sites. ACS Energy Lett. 2020, 5, 1044–1053. [Google Scholar] [CrossRef]
- Sebastián-Pascual, P.; Escudero-Escribano, M. Addressing the Interfacial Properties for CO Electroreduction on Cu with Cyclic Voltammetry. ACS Energy Lett. 2020, 5, 130–135. [Google Scholar] [CrossRef]
- Li, S.; Guan, A.; Yang, C.; Peng, C.; Lv, X.; Ji, Y.; Quan, Y.; Wang, Q.; Zhang, L.; Zheng, G. Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C2+ Products. ACS Mater. Lett. 2021, 3, 1729–1737. [Google Scholar] [CrossRef]
- Shi, X.; Shi, L.; Wang, J.; Zhou, Y.; Zhao, S. Defect Engineering of Nanomaterials for Selective Electrocatalytic CO2 Reduction. Matter 2024, 7, 4233–4259. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Pei, J.; Li, H.; Ji, S.; Shi, L.; Zhang, Y.; Li, C.; Tang, C.; Liao, J.; et al. Continuous Electroproduction of Formate via CO2 Reduction on Local Symmetry-Broken Single-Atom Catalysts. Nat. Commun. 2023, 14, 6849. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wu, Y.; Luo, Y.; Zhou, N. Double Atom-Anchored Defective Boron Nitride Catalyst for Efficient Electroreduction of CO2 to CH4: A First Principles Study. Chem. Phys. Lett. 2020, 756, 137852. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Jiang, D. First-Principles Insight into Electrocatalytic Reduction of CO2 to CH4 on a Copper Nanoparticle. J. Phys. Chem. C 2018, 122, 11392–11398. [Google Scholar] [CrossRef]
- Ali, S.A.; Sadiq, I.; Ahmad, T. Deep Insight of CO2 Reduction Reaction Mechanism through Experimental and Theoretical Anticipations. Mater. Today Sustain. 2023, 24, 100587. [Google Scholar] [CrossRef]
- Du, P.; Ding, J.; Liu, C.; Li, P.; Liu, W.; Yan, W.; Pan, Y.; Hu, J.; Zhu, J.; Li, X.; et al. Interface-engineering-induced C−C Coupling for C2H4 Photosynthesis from Atmospheric-concentration CO2 Reduction. Angew. Chem. 2024, 137, e202421353. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Z.; Bao, A.; Tang, X.; Huang, X.; Yi, H.; Zhao, S.; Sun, T.; Wang, J.; Gao, F. Recent Advances on Electrocatalytic CO2 Reduction to Resources: Target Products, Reaction Pathways and Typical Catalysts. Chem. Eng. J. 2023, 453, 139663. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catal. 2022, 12, 7300–7316. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Zhang, X.-L.; Wu, Z.-Z.; Niu, Z.-Z.; Chi, L.-P.; Gao, F.-Y.; Yang, P.-P.; Wang, Y.-H.; Yu, P.-C.; Duanmu, J.-W.; et al. Facet-Switching of Rate-Determining Step on Copper in CO2 -to-Ethylene Electroreduction. Proc. Natl. Acad. Sci. USA 2024, 121, e2400546121. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.-F.; Zhu, H.-L.; Huang, J.-R.; Liao, P.-Q.; Chen, X.-M. Highly Selective CO2 Electroreduction to C2H4 Using a Metal–Organic Framework with Dual Active Sites. J. Am. Chem. Soc. 2021, 143, 7242–7246. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, M.; Si, D.; Mao, M.; Hou, Y.; Huang, Y.; Cao, R. Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel–Nitrogen Site/Copper Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2021, 60, 25485–25492. [Google Scholar] [CrossRef]
- Kastlunger, G.; Wang, L.; Govindarajan, N.; Heenen, H.H.; Ringe, S.; Jaramillo, T.; Hahn, C.; Chan, K. Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction. ACS Catal. 2022, 12, 4344–4357. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Y.; Hu, Y.; Men, Y.; Liu, Y.; Cai, W.; Chen, S. Hydrogen Bond Network Connectivity in the Electric Double Layer Dominates the Kinetic pH Effect in Hydrogen Electrocatalysis on Pt. Nat. Catal. 2022, 5, 900–911. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Yang, P. Address the “Alkalinity Problem” in CO2 Electrolysis with Catalyst Design and Translation. Joule 2021, 5, 737–742. [Google Scholar] [CrossRef]
- Ooka, H.; Figueiredo, M.C.; Koper, M.T.M. Competition between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly Acidic Media. Langmuir 2017, 33, 9307–9313. [Google Scholar] [CrossRef] [PubMed]
- Grozovski, V.; Vesztergom, S.; Láng, G.G.; Broekmann, P. Electrochemical Hydrogen Evolution: H+ or H2 O Reduction? A Rotating Disk Electrode Study. J. Electrochem. Soc. 2017, 164, E3171–E3178. [Google Scholar] [CrossRef]
- Dunwell, M.; Lu, Q.; Heyes, J.M.; Rosen, J.; Chen, J.G.; Yan, Y.; Jiao, F.; Xu, B. The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold. J. Am. Chem. Soc. 2017, 139, 3774–3783. [Google Scholar] [CrossRef]
- Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. Bicarbonate Is Not a General Acid in Au-Catalyzed CO2 Electroreduction. J. Am. Chem. Soc. 2017, 139, 17109–17113. [Google Scholar] [CrossRef]
- Marcandalli, G.; Goyal, A.; Koper, M.T.M. Electrolyte Effects on the Faradaic Efficiency of CO2 Reduction to CO on a Gold Electrode. ACS Catal. 2021, 11, 4936–4945. [Google Scholar] [CrossRef] [PubMed]
- Bondue, C.J.; Graf, M.; Goyal, A.; Koper, M.T.M. Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2021, 143, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Jin, H.; Li, H.; Wang, H.; Duan, J.; Jiao, Y.; Qiao, S.-Z. Acidic CO2-to-HCOOH Electrolysis with Industrial-Level Current on Phase Engineered Tin Sulfide. Nat. Commun. 2023, 14, 2843. [Google Scholar] [CrossRef]
- Ling, N.; Zhang, J.; Wang, M.; Wang, Z.; Mi, Z.; Bin Dolmanan, S.; Zhang, M.; Wang, B.; Ru Leow, W.; Zhang, J.; et al. Acidic Media Impedes Tandem Catalysis Reaction Pathways in Electrochemical CO2 Reduction. Angew. Chem. Int. Ed. 2023, 62, e202308782. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, P.; Zhang, L.; Zhang, G.; Gao, H.; Pang, Z.; Yu, J.; Pei, C.; Wang, T.; Gong, J. Confinement of an Alkaline Environment for Electrocatalytic CO2 Reduction in Acidic Electrolytes. Chem. Sci. 2023, 14, 5602–5607. [Google Scholar] [CrossRef]
- Lai, W.; Qiao, Y.; Wang, Y.; Huang, H. Stability Issues in Electrochemical CO2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. Adv. Mater. 2023, 35, 2306288. [Google Scholar] [CrossRef]
- Nie, W.; Heim, G.P.; Watkins, N.B.; Agapie, T.; Peters, J.C. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products under Strongly Acidic Conditions. Angew. Chem. Int. Ed. 2023, 62, e202216102. [Google Scholar] [CrossRef]
- Hori, Y.; Murata, A.; Takahashi, R. Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution. J. Chem. Soc. Faraday Trans. 1 1989, 85, 2309. [Google Scholar] [CrossRef]
- Sargeant, E.; Rodriguez, P.; Calle-Vallejo, F. Cation Effects on the Adsorbed Intermediates of CO2 Electroreduction Are Systematic and Predictable. ACS Catal. 2024, 14, 8814–8822. [Google Scholar] [CrossRef]
- Raciti, D.; Mao, M.; Wang, C. Mass Transport Modelling for the Electroreduction of CO2 on Cu Nanowires. Nanotechnology 2018, 29, 044001. [Google Scholar] [CrossRef]
- Pan, B.; Fan, J.; Zhang, J.; Luo, Y.; Shen, C.; Wang, C.; Wang, Y.; Li, Y. Close to 90% Single-Pass Conversion Efficiency for CO2 Electroreduction in an Acid-Fed Membrane Electrode Assembly. ACS Energy Lett. 2022, 7, 4224–4231. [Google Scholar] [CrossRef]
- Qin, H.-G.; Du, Y.-F.; Bai, Y.-Y.; Li, F.-Z.; Yue, X.; Wang, H.; Peng, J.-Z.; Gu, J. Surface-Immobilized Cross-Linked Cationic Polyelectrolyte Enables CO2 Reduction with Metal Cation-Free Acidic Electrolyte. Nat. Commun. 2023, 14, 5640. [Google Scholar] [CrossRef]
- Su, J.; Pan, D.; Dong, Y.; Zhang, Y.; Tang, Y.; Sun, J.; Zhang, L.; Tian, Z.; Chen, L. Ultrafine Fe2 C Iron Carbide Nanoclusters Trapped in Topological Carbon Defects for Efficient Electroreduction of Carbon Dioxide. Adv. Energy Mater. 2023, 13, 2204391. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X.L.; et al. Rapid and Green Electric-Explosion Preparation of Spherical Indium Nanocrystals with Abundant Metal Defects for Highly-Selective CO2 Electroreduction. Nano Lett. 2023, 23, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Pan, H.; Liu, Z.; Kang, P. Phase-inversion Induced 3D Electrode for Direct Acidic Electroreduction CO2 to Formic Acid. Small 2023, 19, 2207650. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, H.; Sun, Q.; He, J.; Yao, X.; Sun, C.; Shan, G.; Zhang, M.; Zhu, C.; Su, Z.; et al. Mastering the Lattice Strain in Bismuth-based Electrocatalysts for Efficient CO2-to-formate Conversion. Adv. Funct. Mater. 2024, 34, 2400928. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Xiao, D.; Liu, H.; Song, K.; Wang, Z.; Liu, Y.; Zheng, Z.; Wang, P.; Dai, Y.; et al. Unveiling pH-dependent Adsorption Strength of *CO2− Intermediate over High-density Sn Single Atom Catalyst for Acidic CO2-to-HCOOH Electroreduction. Angew. Chem. Int. Ed. 2024, 63, e202318874. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Zhi, A.; Chen, Z.; Shi, L.; Zhang, Z.; Zhang, Y.; Zhu, Y.; Qiu, X.; Tian, X.; et al. Cation-deficiency-dependent CO2 Electroreduction over Copper-based Ruddlesden–Popper Perovskite Oxides. Angew. Chem. Int. Ed. 2022, 61, e202111670. [Google Scholar] [CrossRef]
- Kash, B.C.; Gomes, R.J.; Amanchukwu, C.V. Mitigating Electrode Inactivation during CO2 Electrocatalysis in Aprotic Solvents with Alkali Cations. J. Phys. Chem. Lett. 2023, 14, 920–926. [Google Scholar] [CrossRef]
- Fan, M.; Huang, J.E.; Miao, R.K.; Mao, Y.; Ou, P.; Li, F.; Li, X.-Y.; Cao, Y.; Zhang, Z.; Zhang, J.; et al. Cationic-Group-Functionalized Electrocatalysts Enable Stable Acidic CO2 Electrolysis. Nat. Catal. 2023, 6, 763–772. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, Z.; Xia, S.; Cai, R.; Ma, L.; Zhang, T.; Ackley, J.; Yang, S.; Wu, Y.; et al. Grain Boundary-derived Cu+ /Cu0 Interfaces in CuO Nanosheets for Low Overpotential Carbon Dioxide Electroreduction to Ethylene. Adv. Sci. 2022, 9, 2200454. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Zhao, X.; Chen, S.; Nian, Q.; Luo, X.; Fan, J.; Ruan, D.; Xiong, B.-Q.; Ren, X. Localized Alkaline Environment via in Situ Electrostatic Confinement for Enhanced CO2 -to-Ethylene Conversion in Neutral Medium. J. Am. Chem. Soc. 2023, 145, 6339–6348. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wu, M.; Huang, D.; Yang, Y.; Liu, Y.; Zhang, L.; Lai, F.; You, B.; Fang, J.; Liu, T.; et al. Which Dominates Industrial–Current–Density CO2 -to-C2+ Electroreduction: Cuδ+ or the Microenvironment? Energy Environ. Sci. 2024, 17, 2897–2907. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.-L.; Wei, Z.; Zhang, M.-K.; Cai, J.; Chen, Y.-X. The Electrostatic Effect and Its Role in Promoting Electrocatalytic Reactions by Specifically Adsorbed Anions. Phys. Chem. Chem. Phys. 2023, 25, 8317–8330. [Google Scholar] [CrossRef]
- Ma, M.; Seger, B. Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO2 into Multicarbon Products. Angew. Chem. Int. Ed. 2024, 63, e202401185. [Google Scholar] [CrossRef]
- Grahame, D.C. The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 1947, 41, 441–501. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Tilak, B.V.K.S.R.A. The Structure of the Electrical Double Layer at the Metal-Solution Interface. Chem. Rev. 1965, 65, 635–684. [Google Scholar] [CrossRef]
- Murata, A.; Hori, Y. Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Sun, L.; Yang, W. Dynamic Cation Enrichment during Pulsed CO2 Electrolysis and the Cation-Promoted Multicarbon Formation. J. Am. Chem. Soc. 2024, 146, 23901–23908. [Google Scholar] [CrossRef]
- Waegele, M.M.; Gunathunge, C.M.; Li, J.; Li, X. How Cations Affect the Electric Double Layer and the Rates and Selectivity of Electrocatalytic Processes. J. Chem. Phys. 2019, 151, 160902. [Google Scholar] [CrossRef]
- Moura De Salles Pupo, M.; Kortlever, R. Electrolyte Effects on the Electrochemical Reduction of CO2. ChemPhysChem 2019, 20, 2926–2935. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.R.; Kwon, Y.; Lum, Y.; Ager, J.W.; Bell, A.T. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012. [Google Scholar] [CrossRef] [PubMed]
- Resasco, J.; Chen, L.D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T.F.; Chan, K.; Bell, A.T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287. [Google Scholar] [CrossRef]
- Chen, L.D.; Urushihara, M.; Chan, K.; Nørskov, J.K. Electric Field Effects in Electrochemical CO2 Reduction. ACS Catal. 2016, 6, 7133–7139. [Google Scholar] [CrossRef]
- Ringe, S.; Clark, E.L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A.T.; Chan, K. Understanding Cation Effects in Electrochemical CO2 Reduction. Energy Environ. Sci. 2019, 12, 3001–3014. [Google Scholar] [CrossRef]
- Malkani, A.S.; Li, J.; Oliveira, N.J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Understanding the Electric and Nonelectric Field Components of the Cation Effect on the Electrochemical CO Reduction Reaction. Sci. Adv. 2020, 6, eabd2569. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, S.; Ni, W.; Ren, W.; Haussener, S.; Hu, X. Modulating Electric Field Distribution by Alkali Cations for CO2 Electroreduction in Strongly Acidic Medium. Nat. Catal. 2022, 5, 268–276. [Google Scholar] [CrossRef]
- Thorson, M.R.; Siil, K.I.; Kenis, P.J.A. Effect of Cations on the Electrochemical Conversion of CO2 to CO. J. Electrochem. Soc. 2013, 160, F69–F74. [Google Scholar] [CrossRef]
- Ayemoba, O.; Cuesta, A. Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction. ACS Appl. Mater. Interfaces 2017, 9, 27377–27382. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Wang, T.; Cai, Y.-C.; Li, X.-Y.; Ye, J.-Y.; Zhou, Y.; Tian, N.; Zhou, Z.-Y.; Sun, S.-G. Probing Electrolyte Effects on Cation-Enhanced CO2 Reduction on Copper in Acidic Media. Nat. Catal. 2024, 7, 807–817. [Google Scholar] [CrossRef]
- Malkani, A.S.; Anibal, J.; Xu, B. Cation Effect on Interfacial CO2 Concentration in the Electrochemical CO2 Reduction Reaction. ACS Catal. 2020, 10, 14871–14876. [Google Scholar] [CrossRef]
- Ovalle, V.J.; Hsu, Y.-S.; Agrawal, N.; Janik, M.J.; Waegele, M.M. Correlating Hydration Free Energy and Specific Adsorption of Alkali Metal Cations during CO2 Electroreduction on Au. Nat. Catal. 2022, 5, 624–632. [Google Scholar] [CrossRef]
- Monteiro, M.C.O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M.T.M. Absence of CO2 Electroreduction on Copper, Gold and Silver Electrodes without Metal Cations in Solution. Nat. Catal. 2021, 4, 654–662. [Google Scholar] [CrossRef]
- Chen, W.; Du, X.; Tao, S.; Lin, B.; Tranca, I.; Tielens, F.; Ma, M.; Liu, Z. Electrolyte Effects on Reaction Kinetics in Electrochemical CO2 Reduction: The Roles of pH, Cations, and Anions. Chem. Phys. Rev. 2025, 6, 011302. [Google Scholar] [CrossRef]
- Gao, D.; Sinev, I.; Scholten, F.; Arán-Ais, R.M.; Divins, N.J.; Kvashnina, K.; Timoshenko, J.; Roldan Cuenya, B. Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-driven Nanostructuring. Angew. Chem. Int. Ed. 2019, 58, 17047–17053. [Google Scholar] [CrossRef]
- Hashiba, H.; Weng, L.-C.; Chen, Y.; Sato, H.K.; Yotsuhashi, S.; Xiang, C.; Weber, A.Z. Effects of Electrolyte Buffer Capacity on Surface Reactant Species and the Reaction Rate of CO2 in Electrochemical CO2 Reduction. J. Phys. Chem. C 2018, 122, 3719–3726. [Google Scholar] [CrossRef]
- Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J.Z.; Bell, A.T. Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2. ChemElectroChem 2018, 5, 1064–1072. [Google Scholar] [CrossRef]
- Tomisaki, M.; Kasahara, S.; Natsui, K.; Ikemiya, N.; Einaga, Y. Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. J. Am. Chem. Soc. 2019, 141, 7414–7420. [Google Scholar] [CrossRef]
- Moradzaman, M.; Mul, G. Optimizing CO Coverage on Rough Copper Electrodes: Effect of the Partial Pressure of CO and Electrolyte Anions (pH) on Selectivity toward Ethylene. J. Phys. Chem. C 2021, 125, 6546–6554. [Google Scholar] [CrossRef]
- Ge, W.; Zhu, Y.; Wang, H.; Jiang, H.; Li, C. Anionic Surfactant-Tuned Interfacial Water Reactivity Promoting Electrocatalytic CO2 Reduction. ACS Catal. 2024, 14, 18156–18166. [Google Scholar] [CrossRef]
- Huang, Y.; Ong, C.W.; Yeo, B.S. Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces. ChemSusChem 2018, 11, 3299–3306. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Arán-Ais, R.M.; Jeon, H.S.; Roldan Cuenya, B. Rational Catalyst and Electrolyte Design for CO2 Electroreduction towards Multicarbon Products. Nat. Catal. 2019, 2, 198–210. [Google Scholar] [CrossRef]
- Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Inhibited Proton Transfer Enhances Au-Catalyzed CO2 -to-Fuels Selectivity. Proc. Natl. Acad. Sci. USA 2016, 113, E4585–E4593. [Google Scholar] [CrossRef]
- Yoo, J.M.; Ingenmey, J.; Salanne, M.; Lukatskaya, M.R. Anion Effect in Electrochemical CO2 Reduction: From Spectators to Orchestrators. J. Am. Chem. Soc. 2024, 146, 31768–31777. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Li, M.; Wu, Y.; Nazmi Idros, M.; Wang, H.; Yago, A.J.; Ge, L.; Wang, G.G.X.; Rufford, T.E. Understanding the Effects of Anion Interactions with Ag Electrodes on Electrochemical CO2 Reduction in Choline Halide Electrolytes. ChemSusChem 2021, 14, 2601–2611. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Scholten, F.; Roldan Cuenya, B. Improved CO2 Electroreduction Performance on Plasma-Activated Cu Catalysts via Electrolyte Design: Halide Effect. ACS Catal. 2017, 7, 5112–5120. [Google Scholar] [CrossRef]
- Yuan, X.; Ge, W.; Zhu, Y.; Dong, L.; Jiang, H.; Li, C. Anionic Surfactant–Tailored Interfacial Microenvironment for Boosting Electrochemical CO2 Reduction. ACS Appl. Mater. Interfaces 2024, 16, 38083–38091. [Google Scholar] [CrossRef]
Reaction | Potential (V vs. RHE) |
---|---|
x CO2 + n H+ + n e−→product + y H2O | |
CO2 + 2H+ + 2e−→CO (g) + H2O | −0.10 |
CO2 + 2H+ + 2e−→HCOOH (aq) | −0.12 |
CO2 + 4H+ + 4e−→C (s) + 2H2O | 0.21 |
CO2 + 6H+ + 6e−→CH3OH (aq) + H2O | 0.03 |
CO2 + 8H+ + 8e−→CH4 (aq) + 2H2O | 0.17 |
2CO2 + 8H+ + 8e−→CH3COOH (aq) + 2H2O | 0.11 |
2CO2 + 10H+ + 10e−→CH3CHO (aq) + 3H2O | 0.06 |
2CO2 + 12H+ + 12e−→C2H4 (q) + 4H2O | 0.08 |
2CO2 + 12H+ + 12e−→C2H5COOH (aq) + 3H2O | 0.09 |
2CO2 + 14H+ + 14e−→C2H6 (g)+ 4H2O | 0.14 |
3CO2 + 16H+ + 16e−→C2H5CHO (aq) + 5H2O | 0.09 |
3CO2 + 18H+ + 18e−→C3H7OH (aq) + 5H2O | 0.10 |
H3O+→H+ + H2O | - |
2H+ + 2e−→H2 | 0 |
2H2O + 2e−→H2 + 2OH− | - |
Parameters | Previous Studies | Recent Advances |
---|---|---|
CO FE | ~80% (H2SO4 + Cs2SO4, Ag) [71] | 95% (K2SO4, Ag@C) [65] 95% (H2SO4, c-PDDA-Ag) [72] 97.1% (KHCO3, Fe2C-Cs@DC) [73] |
HCOOH FE | 80% (KHCO3, In NCs) [74] 89.2% (Na2SO4, Porous Bi) [75] | 90.15% (KOH, BOC/Bi-3) [76] 90.8% (K2SO4 + H2SO4, Sn-SAC) [77] 93% (K2SO4, r-Pb) [77] |
CH4 FE | ~57% (KOH, La2−x CuO4−δ) [78] | 80% (DMSO, Cu) [79] 71% (H2SO4, EDTA-Cu) [80] |
C2H4 FE | 26% (H3PO4 + KCl, CAL-Cu) [24] ~63% (KOH, CuO-160W) [81] | 70% (K2SO4 + H2SO4, C/Cu/PTFE) [82] 74% (KOH, Dendritic CuO) [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Z.; Chen, T.; Zhang, J.; Zhang, Y. Electrolyte Effect on Electrocatalytic CO2 Reduction. Nanomaterials 2025, 15, 648. https://doi.org/10.3390/nano15090648
Zhang J, Zhang Z, Chen T, Zhang J, Zhang Y. Electrolyte Effect on Electrocatalytic CO2 Reduction. Nanomaterials. 2025; 15(9):648. https://doi.org/10.3390/nano15090648
Chicago/Turabian StyleZhang, Jiandong, Ziliang Zhang, Tianye Chen, Jiayi Zhang, and Yu Zhang. 2025. "Electrolyte Effect on Electrocatalytic CO2 Reduction" Nanomaterials 15, no. 9: 648. https://doi.org/10.3390/nano15090648
APA StyleZhang, J., Zhang, Z., Chen, T., Zhang, J., & Zhang, Y. (2025). Electrolyte Effect on Electrocatalytic CO2 Reduction. Nanomaterials, 15(9), 648. https://doi.org/10.3390/nano15090648