The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dielectric Constant Changes
- MF description: isotropic phase: (compressibility), (heat capacity/internal energy), and (correlation length), and for the nematic phase: (order parameter), , and (correlation length). The value in the isotropic phase, consistent with the experimental evidence, appears only after introducing the ‘fluctuational corrections’ [80,81,82].
3.2. Primary Relaxation Time in the Previtreous Domain
3.3. Primary Loss Curve Maximum Previtreous Changes
3.4. DC Electric Conductivity in the Isotropic Liquid and Supercooled Nematic
4. Discussion: Glass Transition and Near-Critical Discontinuous Transitions
- Dynamic properties such as the primary relaxation time , viscosity , or electric conductivity do not show a pretransitional anomaly, but the long-range Super-Arrhenius evolution [38,39,65,66,67,68,106]. Such behavior is also visible in Figure 7, with the non-Arrhenius parameterization via Equations (16) and (17).
- Static properties, such as dielectric constant, can show an explicit ‘critical’ anomaly. However, it appears only for LC systems with the permanent dipole moment approximately parallel to the long molecular axis, yielding the contrast factor : see Figure 2 and Figure 3, and Equations (6) and (8) above and refs. [65,66,67,68,77,78,79]. For LC molecules with the perpendicular (transverse) arrangement of the dipole moment, the pretransitional effect is absent: in such a case, [68].
- ‘Nonlinear’ properties, coupled to a four-point correlation function and related to such properties as NDE/NDS or the Kerr effect (KE): The pretransitional, ‘critical’ effects are always observed in the isotropic phase [23,38,39,76,82,106]. NDE, NDS, and KE are inherently associated with a strong electric field, which impacts fluctuations and their surroundings, creating a contrast factor between them; i.e., . Definitions of these properties show that the contribution related to fluctuations is explicitly extracted.
- Recalling (3)—Recently, hallmarks of dielectric constant pretransitional behavior have been noted for 8*OCB, an LC compound that can be supercooled down to in the isotropic phase [99]. Notable are extreme problems with such tests since they require scans for extremely low frequencies.
- Recalling (4)—Generally, for experimental methods coupled to four-point correlation functions—like nonlinear dielectric spectroscopy NDS or nonlinear dielectric effect NDE—the response from ‘heterogeneities’ is registered. However, available data do not allow the consideration of temperature-related pretransitional effects ([6,9] and refs therein). It is associated with the ultraviscous/ultraslowed nature of the previtreous domain, yielding very challenging experimental requirements [6]. Nevertheless, the ‘ultraviscous limitation’ is minimized for plastic crystal-forming systems, like the Orientationally Disordered Crystals (ODICs). For NDE, the explicit critical-type effects were detected in glass & ODIC forming cyclooctane [23]. Moreover, its description can be correlated with pretransitional effect modeling for the isotropic phase of nematogens [23].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Fragility Concept in Glass-Forming Systems
Appendix A.2. Supplementary DSC Studies
References
- Sokolov, A.P. Why the glass transition is still interesting. Science 1995, 273, 1675–1676. [Google Scholar] [CrossRef]
- Debenedetti, P.; Stillinger, F. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef]
- Kennedy, D.; Norman, C. What don’t we know. Science 2005, 309, 75. [Google Scholar] [CrossRef] [PubMed]
- Wolyness, P.G.; Lubchenko, V. Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications; J. Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Berthier, L.; Ediger, M. Facets of the glass transition. Phys. Today 2016, 69, 40–44. [Google Scholar] [CrossRef]
- Richert, R. Nonlinear Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kremer, F.; Loidl, A. Scaling of Relaxation Processes; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ramirez, R. An Introduction to Glass Transition; Nova Science Publishers: London, UK, 2019. [Google Scholar]
- McKenna, G.B. Glass transition: Challenges of extreme time scales and other interesting problems. Rubber Chem. Technol. 2020, 93, 79–120. [Google Scholar] [CrossRef]
- Chamberlin, R.V. An Ising model for supercooled liquids and the glass transition. Symmetry 2022, 14, 2211. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Rzoska, S.J.; Starzonek, S. New scaling paradigm for dynamics in glass-forming systems. Prog. Mater. Sci. 2023, 134, 101074. [Google Scholar] [CrossRef]
- Welch, R.S.; Zanotto, E.D.; Wilkinson, C.J.; Cassar, D.R.; Montazerian, M.; Mauro, J.C. Cracking the Kauzmann paradox. Acta Mater. 2023, 254, 118994. [Google Scholar] [CrossRef]
- Dyre, J.C. Solid-that-flows picture of glass-forming liquids. J. Phys. Chem. Lett. 2024, 15, 1603–1617. [Google Scholar] [CrossRef]
- Costigliola, L.; Hecksher, T.; Dyre, J.C. Glass-forming liquids need facilitation. Proc. Natl. Acad. Sci. USA 2024, 121, e2408798121. [Google Scholar] [CrossRef]
- Böhmer, T.; Pabst, F.; Gabriels, J.P.; Blochowicz, T. Dipolar order controls dielectric response of glass transition. Phys. Rev. Lett. 2024, 132, 206101. [Google Scholar] [CrossRef] [PubMed]
- Lum, H. When physics meets chemistry at the dynamic glass transition. Rep. Prog. Phys. 2025, 87, 032601. [Google Scholar]
- Drozd-Rzoska, A.; Rzoska, S.J.; Starzonek, S. New paradigm for configurational entropy in glass-forming systems. Sci. Rep. 2022, 12, 3058. [Google Scholar] [CrossRef]
- Kojima, S. Dynamic Specific Heat and the Glass Transition; Intech: Rijeka, Croatia, 2023. [Google Scholar]
- Eaves, J.D.; Reichmanm, D.R. Spatial dimension and the dynamics of supercooled liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 15171–15175. [Google Scholar] [CrossRef]
- Garrahan, J.P. Dynamic heterogeneity comes to life. Proc. Natl. Acad. Sci. USA 2011, 108, 4701–4702. [Google Scholar] [CrossRef]
- Rzoska, S.J.; Drozd-Rzoska, A. Dual field nonlinear dielectric spectroscopy in a glass forming EPON 828 epoxy resin. J. Phys. Condens. Matter 2011, 24, 035101. [Google Scholar] [CrossRef]
- Tah, I.; Karmakar, S. Signature of dynamical heterogeneity in spatial correlations of particles displacement and its temporal evolution in supercooled liquids. Phys. Rev. Res. 2020, 2, 022067. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Rzoska, S.J.; Szpakiewicz-Szatan, A.; Łoś, J.; Starzonek, S. Supercritical anomalies in liquid ODIC-forming cyclooctanol under the strong electric field. J. Mol. Liq. 2022, 345, 1178491. [Google Scholar] [CrossRef]
- Hasyim, M.R.; Mandadapu, K.K. Emergent facilitation and glass dynamics in supercooled liquids. Proc. Natl. Acad. Sci. USA 2024, 121, e2322592121. [Google Scholar] [CrossRef]
- Vogel, H. Temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Zeit. 1921, 22, 645–646. [Google Scholar]
- Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Tammann, G. Glasses as supercooled liquids. J. Soc. Glass Technol. 1925, 9, 166–185. [Google Scholar]
- Tanaka, H. Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 2003, 90, 05570. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.P.; Andersson, O. Relaxation studies of poly(propylene glycol) under high pressure. Macromolecules 1998, 31, 2999–3006. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Rzoska, S.J.; Paluch, M. On the glass transition under extreme pressure. J. Chem. Phys. 2007, 126, 164504. [Google Scholar]
- Pronin, A.A.; Kondrin, M.V.; Lyapin, A.G.; Brazkhin, V.V.; Volkov, A.A.; Lunkenheimer, P. Glassy dynamics under superhigh pressure. Phys. Rev. E 2010, 81, 041503. [Google Scholar] [CrossRef]
- Floudas, G.; Paluch, M.; Grzybowski, A.; Ngai, K. Molecular Dynamics of Glass-Forming Systems: Effects of Pressure; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kondrin, M.V.; Pronin, A.A.; Brazkhin, V.V. Secondary relaxation in supercooled liquid propylene glycol under ultrahigh pressures revealed by dielectric spectroscopy measurements. J. Phys. Chem. B 2018, 122, 9032–9037. [Google Scholar] [CrossRef]
- Bair, S. High Pressure Rheology for Quantitative Elastohydrodynamics; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Drozd-Rzoska, A. Pressure-related universal previtreous behavior of the structural relaxation time and apparent fragility. Front. Mater. Glass Sci. 2019, 6, 103. [Google Scholar] [CrossRef]
- Kondrin, M.V.; Pronin, A.A.; Lebed, Y.B.; Brazhkin, V.V. High pressures as an effective tool to separate different contributions to the electrode polarization of polar liquids and solids. J. Phys. Chem. Solids 2024, 182, 111570. [Google Scholar] [CrossRef]
- Starzonek, S.; Rzoska, S.J.; Drozd-Rzoska, A.; Pawlus, S.; Martinez-Garcia, J.-C.; Kistersky, L. Fractional Debye–Stokes–Einstein behaviour in an ultraviscous nanocolloid: Glycerol and silver nanoparticles. Soft Matter 2011, 5, 5554–5562. [Google Scholar] [CrossRef]
- Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.-W.; Vill, V. Handbook of Liquid Crystals: Fundamentals; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Collings, P.; Goodby, J.W. Introduction to Liquid Crystals: Chemistry and Physics; CRC Press: Boca Raton, FL, USA; Routledge: London, UK, 2019. [Google Scholar]
- Google Scholar Search. By the Authors of the Report. Available online: https://scholar.google.co.jp/ (accessed on 22 January 2025).
- Lagerwall, J.P.F. Liquid Crystals with Nano and Microparticles; World Scientific: Singapore, 2016. [Google Scholar]
- Dierking, I. Nanomaterials in Liquid Crystals. Nanomaterials 2018, 8, 453. [Google Scholar] [CrossRef]
- Thomas, S.; Kalarikkal, N.; Abraham, A.R. Fundamentals and Properties of Multifunctional Nanomaterials (Micro and Nano Technologies); Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Brás, A.R.; Frunza, S.; Guerreiro, L.; Fonseca, I.M.; Corma, A.; Frunza, L.; Dionísio, M.; Schönhals, A. Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree. J. Chem. Phys. 2010, 132, 224508. [Google Scholar] [CrossRef]
- Kim, Y.K.; Senyuk, B.; Lavrentovich, O. Molecular reorientation of a nematic liquid crystal by thermal expansion. Nat. Commun. 2012, 3, 1133. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, P.; Malik, P. Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal. AIP Conf. Proc. 2018, 1953, 100037. [Google Scholar]
- Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I. Impact of spherical nanoparticles on nematic order parameters. Phys. Rev. E 2018, 97, 042701. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Nanomaterials in liquid crystals as ion-generating and ion-capturing objects. Crystals 2018, 8, 264. [Google Scholar] [CrossRef]
- Selevou, A.; Papamokos, G.; Yildirim, T.; Duran, H.; Steinhart, M.; Floudas, G. Eutectic liquid crystal mixture E7 in nanoporous alumina. Effects of confinement on the thermal and concentration fluctuations. RSC Adv. 2019, 9, 37846–37857. [Google Scholar] [CrossRef] [PubMed]
- Derbali, M.; Guesmi, A.; Ben Hamadi, N.; Soltani, T. Dielectric, electrooptic and viscoelastic properties in cybotactic nematic phase doped with ferroelectric nanoparticles. J. Mol. Liq. 2020, 319, 113768. [Google Scholar] [CrossRef]
- Garbovskiy, Y. On the analogy between electrolytes and ion-generating nanomaterials in liquid crystals. Nanomaterials 2020, 10, 403. [Google Scholar] [CrossRef]
- Ambrožic, M.; Pal, K.; Kralj, S.; Holbl, A. Nanoparticle controlled nematic macroscopic properties. J. Mol. Struct. 2021, 1230, 129878. [Google Scholar] [CrossRef]
- Vafaie, R.; Vahedi, A.; Zakerhamidi, M.S.; Tajalli, H. Dielectric and electro-optical properties of 6CHBT nematic liquid crystals doped with MgO nanoparticles. Liq. Cryst. 2021, 48, 1417–1428. [Google Scholar] [CrossRef]
- Nasri, R.; Missaoui, T.R.; Hbibi, A.; Soltani, T. Enhanced dielectric properties of nematic liquid crystal doped with ferroelectric nanoparticles. Liq. Cryst. 2021, 48, 1429–1437. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Ebrahimpour, N.; Zakerhamidi, M.S.; Seyedahmadian, S.M. Temperature-dependent dielectric property of a nematic liquid crystal doped with two differently–shaped tungsten oxide (W18O49) nanostructures. J. Mol. Liq. 2022, 348, 118024. [Google Scholar] [CrossRef]
- Kovalchuk, O.V.; Kovalchuk, T.M.; Tomašovičová, N.; Timko, M.; Zakutanska, K.; Miakota, D.; Kopčanský, P.; Shevchuk, O.F.; Garbovskiy, Y. Dielectric and electrical properties of nematic liquid crystals 6CB doped with iron oxide nanoparticles. The combined effect of nanodopant concentration and cell thickness. J. Mol. Liq. 2022, 366, 120305. [Google Scholar] [CrossRef]
- Rastogi, A.; Mishra, A.; Pandey, F.P.; Manohar, R.; Parmar, A.S. Enhancing physical characteristics of thermotropic nematic liquid crystals by dispersing in various nanoparticles and their potential applications. Emergent Mater. 2023, 6, 101–136. [Google Scholar] [CrossRef]
- Kyrou, C.; Ambrozic, M.; Tsiourvas, D.; Kralj, S.; Atata, S.B.; Lelidis, I. Effect of quantum dots on the phase behavior and order of 8CB liquid crystals. J. Mol. Liq. 2023, 387, 122568. [Google Scholar] [CrossRef]
- Zid, M.; Cordoyiannis, G.; Kutnjak, Z.; Kralj, S. Criticality controlling mechanisms in nematic liquid crystals. Nanomaterials 2024, 14, 320. [Google Scholar] [CrossRef]
- Okutan, M.; Ozturk, M.; Yesilot, G.; Yalcın, O.; Bolívar, P.H. Fullerene C60: Dielectric and elastic properties of E8 nematic liquid crystal. J. Phys. Condens. Matter 2024, 673, 1417–1428. [Google Scholar] [CrossRef]
- Jones, J.C. The fiftieth anniversary of the liquid crystal display. Liq. Cryst. Today 2018, 27, 44–70. [Google Scholar] [CrossRef]
- Raynes, E.P.; Sage, I.C. Chemicals to calculators: The early exploitation of cyanobiphenyl liquid crystals. Liq. Cryst. 2015, 42, 722–731. [Google Scholar] [CrossRef]
- De Sousa, F.A.; Michels, R.N.; Cardoso, P.M.M.; de Jesus, M.M.A. Experimental proof of an anomalous behavior in the nematic phase of liquid crystal E7. Mol. Cryst. Liq. Cryst. 2013, 576, 116–117. [Google Scholar] [CrossRef]
- Kalabiński, J.; Drozd-Rzoska, A.; Rzoska, S.J. Phase equilibria and critical behavior in nematogenic MBBA–isooctane monotectic-type mixtures. Int. J. Mol. Sci. 2023, 24, 2065. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Starzonek, S.; Rzoska, S.J.; Kralj, S. Nanoparticle-controlled glassy dynamics in nematogen-based nanocolloids. Phys. Rev. E 2019, 99, 052703. [Google Scholar] [CrossRef]
- Łoś, J.; Drozd-Rzoska, A.; Rzoska, S.J.; Starzonek, S.; Czupryński, K. Fluctuations-driven dielectric properties of liquid crystalline octyloxycyanobiphenyl and its nanocolloids. Soft Matter 2022, 18, 4502–4512. [Google Scholar] [CrossRef]
- Łoś, J.; Drozd-Rzoska, A.; Rzoska, S.J. Critical-like behavior of low-frequency dielectric properties in compressed liquid crystalline octyloxycyanobiphenyl (8OCB) and its nanocolloid with paraelectric BaTiO3. J. Mol. Liq. 2023, 377, 121555. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Łoś, J.; Rzoska, S.J. The dominance of pretransitional effects in the liquid crystal based nanocolloids: Nematogenic MBBA with the transverse permanent dipole moment and BaTiO3 nanoparticles. Nanomaterials 2024, 14, 655. [Google Scholar] [CrossRef]
- Barium Titanate BaTiO3 Nanoparticles/Nanopowder (BaTiO3, 99.9%, 50 nm, cubic). Available online: https://www.us-nano.com/inc/sdetail/532 (accessed on 23 January 2025).
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Beigmohammadi, M.; Poursamad Bonab, J.; Sadigh, M.K. Controlling the dielectric constant values of nematic liquid crystals using ferroelectric and multiferroic nanoparticles. Opt. Mater. 2024, 157, 116332. [Google Scholar] [CrossRef]
- Jonsher, A.K. Dielectric Relaxation in Solids; Chelsea Dielectric Press: London, UK, 1978. [Google Scholar]
- Jonsher, A.K. Universal Relaxation Law; Chelsea Dielectric Press: London, UK, 1996. [Google Scholar]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A.; Bratek, Ł.; Dattoli, G.; Penson, K.A. The Havriliak–Negami relaxation and its relatives: The response, relaxation and probability density functions. J. Phys. A Math. Theor. 2018, 51, 135202. [Google Scholar] [CrossRef]
- Chełkowski, A. Dielectric Physics; PWN-Elsevier: Warsaw, Poland, 1990. [Google Scholar]
- Bradshaw, M.J.; Raynes, E.P. Pre-transitional effects in the electric permittivity of cyano-nematics. Mol. Cryst. Liq. Cryst. Lett. 1981, 72, 73–78. [Google Scholar] [CrossRef]
- Thoen, J.; Menu, G. Temperature dependence of the static relative permittivity of octylcyanobiphenyl (8CB). Mol. Cryst. Liq. Cryst. 1983, 97, 163–176. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A.; Rzoska, S.J.; Zioło, J. Critical behaviour of dielectric permittivity in the isotropic phase of nematogens. Phys. Rev. E 1996, 54, 6452–6456. [Google Scholar] [CrossRef]
- Anisimov, M.A. Critical Phenomena in Liquids and Liquid Crystals; Gordon and Breach: Reading, UK, 1992. [Google Scholar]
- Honig, J.; Spałek, J. A Primer to the Theory of Critical Phenomena; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Drozd-Rzoska, A. ‘Quasi-tricritical’ and glassy dielectric properties of a nematic liquid crystalline material. Crystals 2020, 10, 297. [Google Scholar] [CrossRef]
- Cummins, P.G.; Dunmur, D.A.; Jessup, N.E. The Dielectric properties of nematic MBBA in the presence of electric and magnetic fields. In Liquid Crystals and Ordered Fluids; Johnson, J.F., Porter, R.S., Eds.; Springer: Boston, MA, USA, 1974. [Google Scholar]
- Mierzwa, M.; Rams-Baron, M.; Capaccioli, S.; Pawlus, S.; Paluch, M. How to align a nematic glassy phase—Different conditions—Different results. J. Mol. Liq. 2019, 280, 314–318. [Google Scholar] [CrossRef]
- Mauro, J.C.; Yue, Y.; Ellison, A.J.; Gupta, P.K.; Allan, D.C. Viscosity of glassforming liquids. Proc. Natl. Acad. Sci. USA 2009, 24, 19780–19784. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Mauro, J.C.; Yue, Y.Z. Ionic diffusion and the topological origin of fragility in silicate glasses. J. Chem. Phys. 2009, 131, 244514. [Google Scholar] [CrossRef]
- Drozd-Rzoska, A. A universal behavior of the apparent fragility in ultraslow glass forming systems. Sci. Rep. 2019, 9, 6816. [Google Scholar] [CrossRef]
- Novikov, V.N.; Sokolov, A.P. Universality of the dynamic crossover in glass-forming liquids: A “magic” relaxation time. Phys. Rev. E 2003, 67, 031507. [Google Scholar] [CrossRef]
- Colby, R.H. Dynamic scaling approach to glass formations. Phys. Rev. E 2000, 61, 1783–1791. [Google Scholar] [CrossRef]
- Erwin, B.M.; Colby, R.H. Temperature dependence of relaxation times and the length scale of cooperative motion for glass-forming liquids. J. Non-Cryst. Solids 2002, 307, 225–231. [Google Scholar] [CrossRef]
- Erwin, B.M.; Masser, K.A.; Colby, R.H. A comparison of rheology, dielectric response, and calorimetry within indane-based glass-formers. J. Non-Cryst. Solids 2006, 352, 4776–4784. [Google Scholar] [CrossRef]
- Richert, R. Scaling vs. Vogel–Fulcher-type structural relaxation in deeply supercooled materials. Physica A 2000, 287, 26–36. [Google Scholar] [CrossRef]
- Tanaka, H.; Kawasaki, T.; Shintani, H. Critical-like behaviour of glass-forming liquids. Nat. Mater. 2010, 9, 324–331. [Google Scholar] [CrossRef]
- Tanaka, H. Roles of liquid structural ordering in glass transition, crystallization, and water’s anomalies. J. Non-Cryst. Solids X 2022, 13, 100076. [Google Scholar] [CrossRef]
- Tong, H.; Tanaka, H. Revealing hidden structural order controlling both fast and slow glass dynamics in supercooled liquids. Phys. Rev. X 2018, 8, 011041. [Google Scholar]
- Franz, S.; Parisi, G.; Tersenghi, F.R. Glassy critical points and the random field Ising model. J. Stat. Mech. Theory Exp. 2013, 2013, LO2001. [Google Scholar] [CrossRef]
- Tao, P.; Du, C.; Xiao, Y.; Zheng, C. Data-driven detection of critical points of phase transitions in complex systems. Commun Phys. 2023, 6, 311. [Google Scholar] [CrossRef]
- Watanabe, M.; Shi, D.; Kiyama, R.; Maruyama, K.; Nishizawa, Y.; Uchihashi, T.; Gong, J.P.; Nonoyama, T. Phase separation-induced glass transition under critical miscible conditions. Mat. Adv. 2024, 6, 7140–7146. [Google Scholar] [CrossRef]
- Starzonek, S.; Łoś, J.; Rzoska, S.J.; Drozd-Rzoska, A.; Iglič, A. Are critical fluctuations responsible for glass formation? Materials 2024, 17, 3385. [Google Scholar] [CrossRef]
- Sengupta, A.; Fayer, M.D. Theory of universal fast orientational dynamics in the isotropic phase of liquid crystals. J. Chem. Phys. 1995, 102, 4193–4202. [Google Scholar] [CrossRef]
- Cang, H.; Li, J.; Novikov, V.N.; Fayer, M.D. Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison. J. Chem. Phys. 2003, 118, 9303–9311. [Google Scholar] [CrossRef]
- Cang, H.; Li, J.; Novikov, V.N.; Fayer, M.D. Dynamical signature of two “ideal glass transitions” in nematic liquid crystals. J. Chem. Phys. 2003, 119, 10421–10427. [Google Scholar] [CrossRef]
- Letz, M.; Schilling, R.; Latz, A. Ideal glass transition for hard ellipsoids. Phys. Rev. E 2000, 62, 5173–5189. [Google Scholar] [CrossRef] [PubMed]
- Theenhaus, T.; Allen, M.P.; Letz, M.; Latz, A.; Schilling, R. Dynamical precursor of nematic order in a dense fluid of hard ellipsoids. Eur. Phys. J. E 2002, 8, 269–279. [Google Scholar] [CrossRef]
- Alhissi, M.; Zumbusch, A.; Fuchs, M. Observation of liquid glass in molecular dynamics simulations. J. Chem. Phys. 2024, 160, 164502. [Google Scholar] [CrossRef]
- Rzoska, S.J.; Paluch, M.; Pawlus, S.; Drozd-Rzoska, A.; Jadzyn, J.; Czupryński, K.; Dąbrowski, R. Complex dielectric relaxation in supercooling and superpressing liquid-crystalline chiral isopentycyanobiphenyl. Phys. Rev. E 2003, 68, 031705. [Google Scholar] [CrossRef]
- Angell, C.A. Perspective on the glass transition. J. Phys. Chem. Solids 1988, 49, 863–871. [Google Scholar] [CrossRef]
- Böhmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Angell, C.A. Formation of glasses from liquids and biopolymers. Science 1995, 267, 1924–1935. [Google Scholar] [CrossRef]
- Mauro, J.C.; Loucks, R.J. Impact of fragility on enthalpy relaxation in glass. Phys. Rev. E 2008, 78, 021502. [Google Scholar] [CrossRef]
- Wang, L.-M.; Mauro, J. An upper limit to kinetic fragility in glass-forming liquids. J. Chem. Phys. 2011, 134, 044522. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Thuo, M. Kauzmann paradox, supercooling, and finding order in chaos. Angew. Chem. 2025, 64, e202423536. [Google Scholar] [CrossRef] [PubMed]
- Drozd-Rzoska, A.; Rzoska, S.J.; Roland, C.M. On the pressure evolution of dynamic properties of supercooled liquids. J. Phys. Condens. Matter 2008, 20, 244103. [Google Scholar] [CrossRef]
- Elouali, M.; Beyens, C.; Elouali, F.Z.; Yaroshchuk, O.; Abbar, B.; Maschke, U. Dispersions of diamond nanoparticles in nematic liquid crystal/polymer materials. Mol. Cryst. Liq. Cryst. 2011, 545, 77–84. [Google Scholar] [CrossRef]
- Bouriche, A.; Bedjaoui Alachaher, L.; Maschke, U. Phase behaviour and electro-optical response of systems composed of nematic liquid crystals and poly (2-ethylhexylacrylate). Liq. Cryst. 2017, 45, 656–665. [Google Scholar] [CrossRef]
NPs | a | |||
---|---|---|---|---|
−0.039 | 0.13 | 329.5 | 1/2 | |
−0.054 | 0.18 | 327 | 1/2 | |
−0.10 | 0.46 | 319 | 1/2 | |
−0.115 | 0.54 | 316 | 1/2 |
E7 + NPs (x%) | (K) | |||||
---|---|---|---|---|---|---|
8.54 | 0.462 | 0.720 | 209.4 | 0.989 | ||
8.38 | 0.454 | 0.717 | 209.3 | 0.9882 | ||
8.20 | 0.440 | 0.714 | 209.5 | 0.983 | ||
7.50 | 0.407 | 0.710 | 209.3 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozd-Rzoska, A.; Łoś, J.; Rzoska, S.J. The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids. Nanomaterials 2025, 15, 597. https://doi.org/10.3390/nano15080597
Drozd-Rzoska A, Łoś J, Rzoska SJ. The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids. Nanomaterials. 2025; 15(8):597. https://doi.org/10.3390/nano15080597
Chicago/Turabian StyleDrozd-Rzoska, Aleksandra, Joanna Łoś, and Sylwester J. Rzoska. 2025. "The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids" Nanomaterials 15, no. 8: 597. https://doi.org/10.3390/nano15080597
APA StyleDrozd-Rzoska, A., Łoś, J., & Rzoska, S. J. (2025). The Impact of Nanoparticles on Previtreous Behavior: Glass-Forming Nematogenic E7 Mixture-Based Nanocolloids. Nanomaterials, 15(8), 597. https://doi.org/10.3390/nano15080597