Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection and Preparation
Ethanolic Extraction of Grape Pomace Extract (GPE)
2.3. Preparation of Zein-PE-Loaded Nanoparticles (ZNp-GPE)
2.4. Characterization
2.4.1. Characterization of the Absorption Spectra
2.4.2. Quantification of Total Phenol Content
2.4.3. Nanoparticles Entrapment Capacity
2.4.4. Morphology and Size Characterization
2.4.5. Hydrodynamic Size Determination and ζ-Potential Measurements
2.4.6. Spectrometer Setup for FTIR Analysis
2.4.7. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Analysis of Spectral Characteristics in the UV–Vis Range
3.2. Quantification of Total Phenol Content of GPE and ZNp
3.3. Nanoparticles Entrapment Capacity
3.4. Hydrodynamic Size Determination and ζ-Potential Measurements
3.5. Morphology and Size Characterization
3.6. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPE | Grape pomace extract |
SEM | Scanning electron microscopy |
FTIR | Fourier transform infrared spectroscopy |
DLS | Dynamic light scattering |
PDI | Polydispersity index |
References
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, J.; Gouvinhas, I.; Domínguez-Perles, R.; Barros, A. Optimization of the Extraction Methodology of Grape Pomace Polyphenols for Food Applications. Molecules 2023, 28, 3885. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Kaur, G.; George, N.; Walia, H.K.; Sillu, D.; Rath, S.K.; Saxena, S.; Rios-Solis, L.; Dwibedi, V. Waste to Wealth: Microbial-Based Valorization of Grape Pomace for Nutraceutical, Cosmetic, and Therapeutic Applications to Promote Circular Economy. Process Saf. Environ. Prot. 2024, 188, 1464–1478. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; Veschi, S.; Cama, A.; Acquaviva, A.; Libero, M.L.; Leone, S.; Di Simone, S.C.; Pagano, E.; Zengin, G.; et al. A Grape (Vitis vinifera L.) Pomace Water Extract Modulates Inflammatory and Immune Response in SW-480 Cells and Isolated Mouse Colon. Phytother. Res. 2022, 36, 4620–4630. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.O.X.; Portugal, I.; Kodel, H.d.A.C.; Droppa-Almeida, D.; Dos Santos Lima, M.; Fathi, F.; Oliveira, M.B.P.P.; de Albuquerque-Júnior, R.L.C.; Dariva, C.; Souto, E.B. Therapeutic Potential of Grape Pomace Extracts: A Review of Scientific Evidence. Food Biosci. 2024, 60, 104210. [Google Scholar] [CrossRef]
- Ferreyra, S.; Bottini, R.; Fontana, A. Temperature and Light Conditions Affect Stability of Phenolic Compounds of Stored Grape Cane Extracts. Food Chem. 2023, 405, 134718. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Velazquez-Antillón, M.; Hernández-Téllez, C.N.; Graciano-Verdugo, A.Z.; García-Flores, N.; Iriqui-Razcón, J.L.; Silvas-García, M.I.; Zazueta-Raynaud, A.; Moreno-Vásquez, M.J.; Hernández-Abril, P.A. Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. Materials 2022, 15, 4838. [Google Scholar] [CrossRef]
- Di Santo, M.C.; D’ Antoni, C.L.; Domínguez Rubio, A.P.; Alaimo, A.; Pérez, O.E. Chitosan-Tripolyphosphate Nanoparticles Designed to Encapsulate Polyphenolic Compounds for Biomedical and Pharmaceutical Applications—A Review. Biomed. Pharmacother. 2021, 142, 111970. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; García-Simarro, M.P.; Navarro-Simarro, P.; Gómez-Gómez, L.; Ahrazem, O.; Niza, E. A Review on the Encapsulation of “Eco-Friendly” Compounds in Natural Polymer-Based Nanoparticles as next Generation Nano-Agrochemicals for Sustainable Agriculture and Crop Management. Int. J. Biol. Macromol. 2024, 280, 136030. [Google Scholar] [CrossRef]
- De Castro, K.C.; Costa, J.M.; Campos, M.G.N. Drug-Loaded Polymeric Nanoparticles: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Garavand, F.; Khodaei, D.; Mahmud, N.; Islam, J.; Khan, I.; Jafarzadeh, S.; Tahergorabi, R.; Cacciotti, I. Recent Progress in Using Zein Nanoparticles-Loaded Nanocomposites for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 3639–3659. [Google Scholar] [CrossRef]
- Xing, M.; Zhao, H.; Ahmed, R.; Wang, X.; Liu, J.; Wang, J.; Guo, A.; Wang, M. Fabrication of Resveratrol-Loaded Zein Nanoparticles Based on Flash Nanoprecipitation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 129829. [Google Scholar] [CrossRef]
- Tortorella, S.; Maturi, M.; Vetri Buratti, V.; Vozzolo, G.; Locatelli, E.; Sambri, L.; Comes Franchini, M. Zein as a Versatile Biopolymer: Different Shapes for Different Biomedical Applications. RSC Adv. 2021, 11, 39004–39026. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gómez, J.; Ortíz-Martínez, M.; Aguilar, O.; García-Lara, S.; Castorena-Torres, F. Antioxidant Activity of Zein Hydrolysates from Zea Species and Their Cytotoxic Effects in a Hepatic Cell Culture. Molecules 2018, 23, 312. [Google Scholar] [CrossRef]
- Oleandro, E.; Stanzione, M.; Buonocore, G.G.; Lavorgna, M. Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives. Nanomaterials 2024, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chalamaiah, M.; Liao, W.; Ren, X.; Ma, H.; Wu, J. Zein Hydrolysate and Its Peptides Exert Anti-Inflammatory Activity on Endothelial Cells by Preventing TNF-α-Induced NF-ΚB Activation. J. Funct. Foods 2020, 64, 103598. [Google Scholar] [CrossRef]
- Tapia-Hernández, J.A.; Rodríguez-Felix, F.; Juárez-Onofre, J.E.; Ruiz-Cruz, S.; Robles-García, M.A.; Borboa-Flores, J.; Wong-Corral, F.J.; Cinco-Moroyoqui, F.J.; Castro-Enríquez, D.D.; Del-Toro-Sánchez, C.L. Zein-Polysaccharide Nanoparticles as Matrices for Antioxidant Compounds: A Strategy for Prevention of Chronic Degenerative Diseases. Food Res. Int. 2018, 111, 451–471. [Google Scholar] [CrossRef]
- Preetam, S.; Duhita Mondal, D.; Mukerjee, N.; Naser, S.S.; Tabish, T.A.; Thorat, N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater. Sci. Eng. 2024, 10, 1946–1965. [Google Scholar] [CrossRef]
- Ghorbani, M.; Nezhad-Mokhtari, P.; Ramazani, S. Aloe Vera-Loaded Nanofibrous Scaffold Based on Zein/Polycaprolactone/Collagen for Wound Healing. Int. J. Biol. Macromol. 2020, 153, 921–930. [Google Scholar] [CrossRef]
- Pérez-Guzmán, C.J.; Castro-Muñoz, R. A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes 2020, 8, 1376. [Google Scholar] [CrossRef]
- Monfared, A.; Ghaee, A.; Ebrahimi-Barough, S. Preparation and Characterisation of Zein/Polyphenol Nanofibres for Nerve Tissue Regeneration. IET Nanobiotechnol. 2019, 13, 571–577. [Google Scholar] [CrossRef] [PubMed]
- De Marco, I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers 2022, 14, 2172. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; He, J.; Sun, Y.; Wang, T.; Shi, Y.; Chen, X.; Liu, L.; Lai, X. Fabrication of PH Responsive Variable Size Hybrid Nanocomposites Based on Zein and LMW-PEI for Safe and Targeted DNA Delivery. J. Mol. Liq. 2025, 421, 126878. [Google Scholar] [CrossRef]
- Yu, J.; Lin, Y.; Wang, G.; Song, J.; Hayat, U.; Liu, C.; Raza, A.; Huang, X.; Lin, H.; Wang, J.-Y. Zein-Induced Immune Response and Modulation by Size, Pore Structure and Drug-Loading: Application for Sciatic Nerve Regeneration. Acta Biomater. 2022, 140, 289–301. [Google Scholar] [CrossRef]
- Pedro Amado, H.-A.; Hiram Jesús, H.V.; Octavio, C.-A.; Hugo Enrique, R.-G.; María Jesús, M.-V.; Ana Guadalupe, L.-A. Zein Polymer Nanocarrier for Ocimum Basilicum Var. Purpurascens Extract: Potential Biomedical Use. Green Process. Synth. 2024, 13, 20240121. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Riaz Rajoka, M.S.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Valorization of Kiwi Agricultural Waste and Industry By-Products by Recovering Bioactive Compounds and Applications as Food Additives: A Circular Economy Model. Food Chem. 2022, 370, 131315. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Goksen, G.; Trif, M.; McClements, D.J.; Moreno, A. Plant-Based Proteins from Agro-Industrial Waste and by-Products: Towards a More Circular Economy. Int. J. Biol. Macromol. 2024, 261, 129576. [Google Scholar] [CrossRef]
- Haque, F.; Fan, C.; Lee, Y.-Y. From Waste to Value: Addressing the Relevance of Waste Recovery to Agricultural Sector in Line with Circular Economy. J. Clean. Prod. 2023, 415, 137873. [Google Scholar] [CrossRef]
- Antoniolli, A.; Fontana, A.R.; Piccoli, P.; Bottini, R. Characterization of Polyphenols and Evaluation of Antioxidant Capacity in Grape Pomace of the Cv. Malbec. Food Chem. 2015, 178, 172–178. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Hernández-Téllez, C.N.; Graciano-Verdugo, A.Z.; Toledo-Guillén, A.R.; Hernández-Abril, P.A. Exploring Antioxidant Potential and Phenolic Compound Extraction from Vitis vinifera L. Using Ultrasound-Assisted Extraction. Green Process. Synth. 2024, 13, 20230141. [Google Scholar]
- Cota-Arriola, O.; Plascencia-Jatomea, M.; Lizardi-Mendoza, J.; Robles-Sánchez, R.M.; Ezquerra-Brauer, J.M.; Ruíz-García, J.; Vega-Acosta, J.R.; Cortez-Rocha, M.O. Preparation of Chitosan Matrices with Ferulic Acid: Physicochemical Characterization and Relationship on the Growth of Aspergillus parasiticus. CyTA—J. Food 2016, 15, 65–74. [Google Scholar] [CrossRef]
- Mamgain, A.; Kenwat, R.; Paliwal, R. Biopolymer Zein Nanoparticles Loaded with Moringa Oleifera Extract for Improved Wound Healing Activity: Development, Qbd Based Optimization and In Vivo Study. Int. J. Biol. Macromol. 2024, 263, 130314. [Google Scholar] [CrossRef]
- Luque-Alcaraz, A.G.; Lizardi-Mendoza, J.; Goycoolea, F.M.; Higuera-Ciapara, I.; Argüelles-Monal, W. Preparation of Chitosan Nanoparticles by Nanoprecipitation and Their Ability as a Drug Nanocarrier. RSC Adv. 2016, 6, 59250–59256. [Google Scholar] [CrossRef]
- Lau, E.; Giddings, S.; Mohammed, S.; Dubois, P.; Johnson, S.; Stanley, R.; Halley, P.; Steadman, K. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics 2013, 5, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Girija Aswathy, R.; Sivakumar, B.; Brahatheeswaran, D.; Fukuda, T.; Yoshida, Y.; Maekawa, T.; Sakthi Kumar, D. Biocompatible Fluorescent Zein Nanoparticles for Simultaneous Bioimaging and Drug Delivery Application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025006. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef]
- Fonseca, F.D.; Symochko, L.; Pinheiro, M.N.C. Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications. Sustainability 2024, 16, 3167. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved Chemical Stability and Cellular Antioxidant Activity of Resveratrol in Zein Nanoparticle with Bovine Serum Albumin-Caffeic Acid Conjugate. Food Chem. 2018, 261, 283–291. [Google Scholar] [CrossRef]
- Hernández-Espinosa, N.; Reyes-Reyes, M.; González-Jiménez, F.E.; Núñez-Bretón, L.C.; Cooper-Bribiesca, B.L. Importancia de Las Proteínas de Almacenamiento En Cereales (Prolaminas). Vertientes. Rev. Espec. Cienc. Salud 2015, 18, 3–7. [Google Scholar]
- Liu, X.; Lee, Y. Fabrication of Zein-Nanoparticles via Ultrasonic Treatment and Encapsulation of Curcumin. LWT 2023, 188, 115299. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Torres-Aguirre, G.A.; Núñez-Gastélum, J.A.; Rosa, L.A.; Rodrigo-García, J.; Ayala-Zavala, J.F.; Álvarez-Parrilla, E. New Approach to the Interaction between Folin-Ciocalteu Reactive and Sugars during the Quantification of Total Phenols. TIP. Rev. Espec. Cienc. Químico-Biológicas 2017, 20, 23–28. [Google Scholar]
- Carrizo, P.S.; Deyá, C.; Fontana, A. Extracto Orujo de Uva Malbec Como Inhibidor Natural de La Corrosión de Materiales Metálicos. AJEA 2020. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Zou, Y.; Qian, Y.; Rong, X.; Cao, K.; McClements, D.J.; Hu, K. Encapsulation of Quercetin in Biopolymer-Coated Zein Nanoparticles: Formation, Stability, Antioxidant Capacity, and Bioaccessibility. Food Hydrocoll. 2021, 120, 106980. [Google Scholar] [CrossRef]
- Xu, W.; Li, C.; McClements, D.J.; Xu, Z.; Zhang, Z.; Zhang, R.; Qiu, C.; Zhao, J.; Jin, Z.; Chen, L. Construction, Characterization and Application of Rutin Loaded Zein—Carboxymethyl Starch Sodium Nanoparticles. Int. J. Biol. Macromol. 2025, 302, 140355. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Li, R.; Jia, X.; Cheng, Y. Impact of Deamidation on Gliadin-Based Nanoparticle Formation and Curcumin Encapsulation. J. Food Eng. 2019, 260, 30–39. [Google Scholar] [CrossRef]
- Zhu, P.; He, J.; Huang, S.; Han, L.; Chang, C.; Zhang, W. Encapsulation of Resveratrol in Zein-Polyglycerol Conjugate Stabilized O/W Nanoemulsions: Chemical Stability, in Vitro Gastrointestinal Digestion, and Antioxidant Activity. LWT 2021, 149, 112049. [Google Scholar] [CrossRef]
- Shabatina, T.I.; Gromova, Y.A.; Vernaya, O.I.; Soloviev, A.V.; Shabatin, A.V.; Morosov, Y.N.; Astashova, I.V.; Melnikov, M.Y. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals 2024, 17, 587. [Google Scholar] [CrossRef]
- Gutiérrez-Cruz, S.G.; Muñoz-Diosdado, A.; Gutiérrez-Calleja, R.A.; Rodríguez-Cortés, O.; Ortiz-Reyez, A.E.; Flores-Mejía, R. Influence of Physicochemical Factors on the Interaction of Metallic Nanoparticles with Immune System Cells. Front. Nanotechnol. 2025, 6, 1496230. [Google Scholar]
- Chuacharoen, T.; Polprasert, C.; Sabliov, C.M. Avocado Seed Extract Encapsulated in Zein Nanoparticles as a Functional Ingredient. J. Agric. Food Res. 2024, 18, 101332. [Google Scholar] [CrossRef]
- Takma, D.K.; Bozkurt, S.; Koç, M.; Korel, F.; Nadeem, H.Ş. Characterization and Encapsulation Efficiency of Zein Nanoparticles Loaded with Chestnut Fruit Shell, Cedar and Sweetgum Bark Extracts. Food Hydrocoll. Health 2023, 4, 100151. [Google Scholar] [CrossRef]
- da Rosa, C.G.; de Oliveira Brisola Maciel, M.V.; de Carvalho, S.M.; de Melo, A.P.Z.; Jummes, B.; da Silva, T.; Martelli, S.M.; Villetti, M.A.; Bertoldi, F.C.; Barreto, P.L.M. Characterization and Evaluation of Physicochemical and Antimicrobial Properties of Zein Nanoparticles Loaded with Phenolics Monoterpenes. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 337–344. [Google Scholar] [CrossRef]
- Baalousha, M.; Lead, J.R. Rationalizing Nanomaterial Sizes Measured by Atomic Force Microscopy, Flow Field-Flow Fractionation, and Dynamic Light Scattering: Sample Preparation, Polydispersity, and Particle Structure. Environ. Sci. Technol. 2012, 46, 6134–6142. [Google Scholar] [CrossRef]
- Proença, P.L.d.F.; Campos, E.V.R.; Costa, T.G.; de Lima, R.; Preisler, A.C.; de Oliveira, H.C.; da Rocha, C.M.; de Andrade, D.J.; Goncalves, K.C.; Polanczyk, R.A.; et al. Curcumin and Carvacrol Co-Loaded Zein Nanoparticles: Comprehensive Preparation and Assessment of Biological Activities in Pest Control. Plant Nano Biol. 2024, 8, 100067. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, J.; You, F.; Zhou, M.; Shi, S. Fabrication, Characterization, and Antimicrobial Activity of Carvacrol-Loaded Zein Nanoparticles Using the PH-Driven Method. Int. J. Mol. Sci. 2022, 23, 9227. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Sun, Y.; Wang, D.; Sun, P.; Shao, P. Effect of Adjusting PH and Chondroitin Sulfate on the Formation of Curcumin-Zein Nanoparticles: Synthesis, Characterization and Morphology. Carbohydr. Polym. 2020, 250, 116970. [Google Scholar] [CrossRef]
- Cui, B.; Li, J.; Lai, Z.; Gao, F.; Zeng, Z.; Zhao, X.; Liu, G.; Cui, H. Emamectin Benzoate-Loaded Zein Nanoparticles Produced by Antisolvent Precipitation Method. Polym. Test. 2021, 94, 107020. [Google Scholar] [CrossRef]
- Liu, G.; An, D.; Li, J.; Deng, S. Zein-Based Nanoparticles: Preparation, Characterization, and Pharmaceutical Application. Front. Pharmacol. 2023, 14, 1120251. [Google Scholar] [CrossRef]
- Yu, X.; Wu, H.; Hu, H.; Dong, Z.; Dang, Y.; Qi, Q.; Wang, Y.; Du, S.; Lu, Y. Zein Nanoparticles as Nontoxic Delivery System for Maytansine in the Treatment of Non-Small Cell Lung Cancer. Drug Deliv. 2020, 27, 100–109. [Google Scholar] [CrossRef]
- Shinde, P.; Agraval, H.; Srivastav, A.K.; Yadav, U.C.S.; Kumar, U. Physico-Chemical Characterization of Carvacrol Loaded Zein Nanoparticles for Enhanced Anticancer Activity and Investigation of Molecular Interactions between Them by Molecular Docking. Int. J. Pharm. 2020, 588, 119795. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, J.; Yang, H.; Zhang, Y.; Zhu, M.; Xiao, Z. Production, Characterization, and Application of Zein–Polyphenol Complexes and Conjugates: A Comprehensive Review. Food Chem. 2025, 467, 142309. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, Z.; Lin, K.; Sun, C.; Dai, L.; Yang, S.; Mao, L.; Yuan, F.; Gao, Y. Fabrication and Characterization of Resveratrol Loaded Zein-Propylene Glycol Alginate-Rhamnolipid Composite Nanoparticles: Physicochemical Stability, Formation Mechanism and in Vitro Digestion. Food Hydrocoll. 2019, 95, 336–348. [Google Scholar]
- Ahmad, M.; Gani, A. Development of Novel Functional Snacks Containing Nano-Encapsulated Resveratrol with Anti-Diabetic, Anti-Obesity and Antioxidant Properties. Food Chem. 2021, 352, 129323. [Google Scholar]
- Mohsen, S.; Bakr, M.M.; ElDegwy, M.A.; Abouhussein, D.M.N.; Fares, A.R.; ElMeshad, A.N. Pomegranate Extract-Loaded Surfactant-Free Zein Nanoparticles as a Promising Green Approach for Hepatic Cancer: Optimization and in Vitro Cytotoxicity. Future J. Pharm. Sci. 2024, 10, 73. [Google Scholar] [CrossRef]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked Electrospun Zein-Based Food Packaging Coatings Containing Bioactive Chilto Fruit Extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Piña, C.; Garrido, L.; Arancibia, C.; Galotto, M.J. Enhancing Thermal Stability and Bioaccesibility of Açaí Fruit Polyphenols through Electrohydrodynamic Encapsulation into Zein Electrosprayed Particles. Antioxidants 2019, 8, 464. [Google Scholar] [CrossRef]
Sample | Total Phenols µmol GAE/g dw |
---|---|
GPE | 16.30 ± 0.88 a |
ZNp | 2.80 ± 0.69 b |
ZNp-GPE1 | 1.94 ± 0.19 b |
ZNp-GPE2 | 2.29 ± 0.27 b |
ZNp-GPE3 | 2.31 ± 0.17 b |
Sample | AE (%) | LE (%) |
---|---|---|
ZNp-GPE1 | 97.62 ± 0.029 a | 4.71 ± 0.001 a |
ZNp-GPE2 | 94.99 ± 0.120 b | 2.29 ± 0.003 b |
ZNp-GPE3 | 89.56 ± 0.169 c | 1.08 ± 0.002 c |
Sample | Hydrodynamic Diameter | PDI | ζ-Potential (mV) |
---|---|---|---|
ZNp | 211.93 ± 2.77 b | 0.0256 ± 0.015 c | 7.28 ± 0.49 c |
ZNp-GPE1 | 136.3 ± 3.31 a | 0.115 ± 0.013 a | 11.62 ± 1.73 a |
ZNp-GPE2 | 142.3 ± 2.31 a | 0.148 ± 0.015 a | 13.4 ± 0.55 ab |
ZNp-GPE3 | 138.2 ± 1.49 a | 0.193 ± 0.015 b | 15.7 ± 0.30 b |
Sample | Average Size (nm) |
---|---|
ZNp | 88.37 ± 26.16 a |
ZNp-GPE1 | 62.97 ± 15.94 a |
ZNp-GPE2 | 69.06 ± 22.30 a |
ZNp-GPE3 | 79.00 ± 20.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luque-Alcaraz, A.G.; Maldonado-Arriola, J.A.; Hernández-Abril, P.A.; Álvarez-Ramos, M.E.; Hernández-Téllez, C.N. Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization. Nanomaterials 2025, 15, 539. https://doi.org/10.3390/nano15070539
Luque-Alcaraz AG, Maldonado-Arriola JA, Hernández-Abril PA, Álvarez-Ramos ME, Hernández-Téllez CN. Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization. Nanomaterials. 2025; 15(7):539. https://doi.org/10.3390/nano15070539
Chicago/Turabian StyleLuque-Alcaraz, Ana Guadalupe, Jesús Antonio Maldonado-Arriola, Pedro Amado Hernández-Abril, Mario Enrique Álvarez-Ramos, and Cynthia Nazareth Hernández-Téllez. 2025. "Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization" Nanomaterials 15, no. 7: 539. https://doi.org/10.3390/nano15070539
APA StyleLuque-Alcaraz, A. G., Maldonado-Arriola, J. A., Hernández-Abril, P. A., Álvarez-Ramos, M. E., & Hernández-Téllez, C. N. (2025). Zein Nanoparticles Loaded with Vitis vinifera L. Grape Pomace Extract: Synthesis and Characterization. Nanomaterials, 15(7), 539. https://doi.org/10.3390/nano15070539