Rich Oxygen Vacancies in Bimetallic MnCo2O4.5 Spheres for Enhancing Lean Methane Catalytic Oxidation
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Preparation of Carbon Spheres
2.3. Preparation of MnCo2O4.5 Catalysts
2.4. Characterization
2.5. Catalytic Activity Testing
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Performance of Catalytic Activity
3.3. In Situ Raman Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, H.; Kong, F.; Bi, X.; Chen, L.; Chen, H.; Yang, D.; Huang, W. Catalytic Combustion of Methane over Noble Metal Catalysts. ACS Catal. 2024, 14, 17972–17992. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Zhang, X.; Cao, X.; Dou, H.; Zhang, L.; Yan, H.; Wang, Y.; Si, Y.; Chen, B. Instrument Performance Analysis for Methane Point Source Retrieval and Estimation Using Remote Sensing Technique. Remote Sens. 2025, 17, 634. [Google Scholar] [CrossRef]
- You, N.; Cao, S.; Huang, M.; Fan, X.; Shi, K.; Huang, H.; Chen, Z.; Yang, Z.; Zhang, W. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Mater. Sci. 2023, 5, 278–286. [Google Scholar] [CrossRef]
- Laugel, G.; Arichi, J.; Guerba, H.; Moliere, M.; Kiennemann, A.; Garin, F.; Louis, B. Co3O4 and Mn3O4 Nanoparticles Dispersed on SBA-15: Efficient Catalysts for Methane Combustion. Catal. Lett. 2008, 125, 14–21. [Google Scholar] [CrossRef]
- Angeli, S.D.; Monteleone, G.; Giaconia, A.; Lemonidou, A.A. State-of-the-art catalysts for CH4 steam reforming at low temperature. Int. J. Hydrogen Energy 2014, 39, 1979–1997. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, B.; Jiang, Y.-J.; Zhou, Y.; Sun, X.; Wang, Y.; Zhu, W. Photocatalytic conversion of methane: Current state of the art, challenges, and future perspectives. ACS Environ. Au 2023, 3, 252–276. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, Y.; Wu, Z. Photocatalytic Oxidative Coupling of Methane to Ethane Using Water and Oxygen on Ag3PO4-ZnO. Environ. Sci. Technol. 2023, 57, 11531–11540. [Google Scholar] [CrossRef]
- Dhulia, A.; Nagara, V.N.; Doughan, A.; Angle, J.; Prince, R.C.; Boufadel, M.C. Exploring Low-Concentration Methane Oxidation: Insights from Bioengineered Column Experiments. Environ. Technol. Innov. 2025, 38, 104117. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Yang, L.; Dong, L.; Wang, D.; Xu, X.; Wang, D.; Huang, J.; Lv, M.; Wang, H. A review of cobalt-containing nanomaterials, carbon nanomaterials and their composites in preparation methods and application. Nanomaterials 2022, 12, 2042. [Google Scholar] [CrossRef]
- Meher, S.K.; Rao, G.R. Ultralayered Co3O4 for High-Performance Supercapacitor Applications. J. Phys. Chem. C 2011, 115, 15646–15654. [Google Scholar] [CrossRef]
- Han, Z.; Dai, L.; Liu, Y.; Deng, J.; Jing, L.; Zhang, Y.; Zhang, K.; Zhang, X.; Hou, Z.; Pei, W. AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion. Catal. Today 2021, 376, 134–143. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, G.; Zeng, L.; Shi, W.; Wang, Y.; Sun, Y.; Yu, Y.; He, H. Anchoring Pt-doped PdO nanoparticles on γ-Al2O3 with highly dispersed La sites to create a methane oxidation catalyst. Appl. Catal. B Environ. 2023, 324, 122259. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Wu, X.; Zhan, Y.; Wang, X.; Au, C.-T.; Jiang, L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion. Catal. Sci. Technol. 2018, 8, 4494–4502. [Google Scholar] [CrossRef]
- Liu, H.; Ding, W.; Zhou, F.; Yang, G.; Du, Y. An overview and outlook on gas adsorption: For the enrichment of low concentration coalbed methane. Sep. Sci. Technol. 2020, 55, 1102–1114. [Google Scholar] [CrossRef]
- Jin, H.; Xu, Z.; Hu, Z.-Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 1518. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Liu, J. Facile synthesis of Mn-Co oxide nanospheres with controllable interior structures and their catalytic properties for methane combustion. Mater. Lett. 2014, 136, 209–213. [Google Scholar] [CrossRef]
- Du, J.; Wu, G.; Wang, J. Density Functional Theory Study of the Interaction of Carbon Monoxide with Bimetallic Co-Mn Clusters. J. Phys. Chem. A 2010, 114, 10508–10514. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Q.; Shan, C.; Lu, S.; Su, Y.; Han, R.; Song, C.; Ji, N.; Ma, D.; Liu, Q. Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal–organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 28139–28147. [Google Scholar] [CrossRef]
- Xiong, L.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y.; Zhong, J.; Sun, H.; Lian, Y.; Yang, B. Geometric Modulation of Local CO Flux in Ag@Cu2O Nanoreactors for Steering the CO2RR Pathway toward High-Efficacy Methane Production. Adv. Mater. 2021, 33, 2101741. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Shi, H.; Sun, D.; Lu, H.; Hou, B.; Jia, L.; Xiao, Y.; Li, D. Facet-dependent activity of Co3O4 catalyst for C3H8 combustion. ChemCatChem 2019, 11, 5570–5579. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Wang, X.; Zhang, X.; Niu, X.; Zhu, Y. Boosting catalytic toluene combustion over Mn doped Co3O4 spinel catalysts: Improved mobility of surface oxygen due to formation of Mn-O-Co bonds. Appl. Surf. Sci. 2022, 590, 153140. [Google Scholar] [CrossRef]
- Driouch, I.; Zhang, W.; Heitz, M.; Valverde, J.L.; Giroir-Fendler, A. Total oxidation of toluene and propane over Co3O4 catalysts: Influence of precipitating pH and washing. Catalysts 2020, 10, 900. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Y.; Chen, X.; Guo, Y.; Wang, H.; Jin, Y.; He, P.; Wei, Q.; Wang, B. Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies. J. Phys. Chem. Solids 2022, 164, 110629. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Q.; Yang, K.; Xu, X.; Huang, J.; Chen, H.; Wang, H. A Review on the Application of Cobalt-Based Nanomaterials in Supercapacitors. Nanomaterials 2022, 12, 4065. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Liu, W.; Xu, X.; Wei, X.; Chao, L.; Zhao, R.; Qi, X.; Che, L. Enhancing catalytic CH4 oxidation over Co3O4/SiO2 core-shell catalyst by substituting Co2+ with Mn2+. J. Dispers. Sci. Technol. 2020, 42, 82–92. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Zhang, T.; Zhang, Y.; Wang, X.; Xiao, Y.; Zhan, Y.; Jiang, L. Construction of a Pd (PdO)/Co3O4@SiO2 core-shell structure for efficient low-temperature methane combustion. Nanoscale 2021, 13, 5026–5032. [Google Scholar] [CrossRef]
- Wang, W.; Han, Z.; Wang, H.; Wei, X.; Zhong, R.; Qi, J. Construction of Co/Mn-based nanowires with adjustable surface state for boosting lean methane catalytic oxidation. Ceram. Int. 2024, 50, 2293–2302. [Google Scholar] [CrossRef]
- Xu, K.; Qin, C.; Li, F.; Ruan, S.; He, C.; Shi, Y.; Wang, X.; Zhang, L. MvK mechanism dominated methane combustion over Ni-CeO2 derived from MOF by flame pyrolysis. Combust. Flame 2023, 252, 112739. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, K.; Qi, Y.; Li, R.; Ding, J.; Liu, R. An easy CTAB-assisted path towards bayberry-like Ni-Co-Mn ternary hydroxide with enhancing supercapacitor performance. Prog. Nat. Sci. Mater. Int. 2023, 33, 433–441. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, Z.; Zeng, P.; Liu, X.; Xu, M. Mn-Co binary core–shell nanospheres with boosted low-temperature catalytic activity for NO oxidation. Fuel 2025, 386, 134229. [Google Scholar] [CrossRef]
- Wei, X.; Yang, K.; Zhu, Q.; Li, J.; Qi, J.; Wang, H. Lattice Distortion in Co3O4/Mn3O4-Guided Synthesis via Carbon Nanotubes for Efficient Lean Methane Combustion. Catalysts 2023, 13, 1112. [Google Scholar] [CrossRef]
- Zou, X.; Rui, Z.; Ji, H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation. ACS Catal. 2017, 7, 1615–1625. [Google Scholar] [CrossRef]
- Zha, K.; Sun, W.; Huang, Z.; Xu, H.; Shen, W. Insights into High-Performance Monolith Catalysts of Co3O4 Nanowires Grown on Nickel Foam with Abundant Oxygen Vacancies for Formaldehyde Oxidation. ACS Catal. 2020, 10, 12127–12138. [Google Scholar] [CrossRef]
- Wang, J.; Yoshida, A.; Wang, P.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method. Appl. Catal. B Environ. 2020, 271, 118941. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, Y.; Song, C.; Liu, Q.; Ji, N.; Ma, D.; Lu, X. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B Environ. 2020, 265, 118552. [Google Scholar] [CrossRef]
- Wu, M.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, L.; Lu, G. An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Appl. Catal. A Gen. 2016, 523, 97–106. [Google Scholar] [CrossRef]
- Zheng, Y.; Su, Y.; Pang, C.; Yang, L.; Song, C.; Ji, N.; Ma, D.; Lu, X.; Han, R.; Liu, Q. Interface-Enhanced Oxygen Vacancies of CoCuOx Catalysts In Situ Grown on Monolithic Cu Foam for VOC Catalytic Oxidation. Environ. Sci. Technol. 2022, 56, 1905–1916. [Google Scholar] [CrossRef]
- Yang, J.; Hu, S.; Shi, L.; Hoang, S.; Yang, W.; Fang, Y.; Liang, Z.; Pan, C.; Zhu, Y.; Li, L.; et al. Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides. Environ. Sci. Technol. 2021, 55, 9243–9254. [Google Scholar] [CrossRef]
- Jiang, L.; Li, D.; Deng, G.; Lu, C.; Huang, L.; Li, Z.; Xu, H.; Zhu, X.; Wang, H.; Li, K. Design of hybrid La1-xCexCoO3-δ catalysts for lean methane combustion via creating active Co and Ce species. Chem. Eng. J. 2023, 456, 141054. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Z.; Zong, C.; Huang, W.; Quan, F.; Yan, N. MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. Environ. Sci. Technol. 2015, 49, 6823–6830. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Arandiyan, H.; Li, J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B Environ. 2013, 142–143, 677–683. [Google Scholar] [CrossRef]
- Rabee, A.I.M.; Gaid, C.B.A.; Mekhemer, G.A.H.; Zaki, M.I. Combined TPR, XRD, and FT-IR studies on the reduction behavior of Co3O4. Mater. Chem. Phys. 2022, 289, 126367. [Google Scholar] [CrossRef]
- Song, L.; Xiong, J.; Cheng, H.; Lu, J.; Liu, P.; Fu, M.; Wu, J.; Chen, L.; Huang, H.; Ye, D. In-Situ characterizations to investigate the nature of Co3+ coordination environment to activate surface adsorbed oxygen for methane oxidation. Appl. Surf. Sci. 2021, 556, 149713. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, J.; Chi, X.; Wu, K.; Song, L.; Li, T.; Zhao, Y.; Huang, H.; Chen, P.; Wu, J. Pd-Promoted Co2NiO4 with lattice CoONi and interfacial PdO activation for highly efficient methane oxidation. Appl. Catal. B Environ. 2021, 292, 120201. [Google Scholar] [CrossRef]
Sample | Co 2p | Mn 2p | O 1s | ||||||
---|---|---|---|---|---|---|---|---|---|
Co3+ | Co2+ | Co3+/Co2+ | Mn3+ | Mn4+ | Mn3+/Mn4+ | Oads | Olatt | Oads/Olatt | |
MnCo2O4.5 | 54.74 | 45.26 | 1.21 | 85.53 | 14.47 | 5.91 | 37.81 | 62.19 | 0.61 |
Co3O4 | 29.21 | 70.79 | 0.41 | - | - | - | 45.04 | 54.96 | 0.82 |
Mn3O4 | - | - | - | 62.39 | 37.61 | 1.66 | 27.79 | 72.21 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Li, C.; Zhu, Q.; Wang, H.; Qi, J. Rich Oxygen Vacancies in Bimetallic MnCo2O4.5 Spheres for Enhancing Lean Methane Catalytic Oxidation. Nanomaterials 2025, 15, 524. https://doi.org/10.3390/nano15070524
Yang K, Li C, Zhu Q, Wang H, Qi J. Rich Oxygen Vacancies in Bimetallic MnCo2O4.5 Spheres for Enhancing Lean Methane Catalytic Oxidation. Nanomaterials. 2025; 15(7):524. https://doi.org/10.3390/nano15070524
Chicago/Turabian StyleYang, Ke, Chenqi Li, Qinghan Zhu, Haiwang Wang, and Jian Qi. 2025. "Rich Oxygen Vacancies in Bimetallic MnCo2O4.5 Spheres for Enhancing Lean Methane Catalytic Oxidation" Nanomaterials 15, no. 7: 524. https://doi.org/10.3390/nano15070524
APA StyleYang, K., Li, C., Zhu, Q., Wang, H., & Qi, J. (2025). Rich Oxygen Vacancies in Bimetallic MnCo2O4.5 Spheres for Enhancing Lean Methane Catalytic Oxidation. Nanomaterials, 15(7), 524. https://doi.org/10.3390/nano15070524