Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UHV | ultrahigh vacuum |
STM | scanning tunneling microscopy |
DFT | Density functional theory |
VASP | Vienna Ab Initio Simulation Package |
PBE | Perdew–Burke–Ernzerhof |
vdWs | van der Waals |
LDOS | local density of states |
BBMBN | (R)-2,2-bis(bromomethyl)-1,1-binaphthalene |
RT | room temperature |
LT | low temperature |
References
- Gao, W.; Cai, L.; Kang, F.; Shang, L.; Zhao, M.; Zhang, C.; Xu, W. Bottom-Up Synthesis of Metalated Carbyne Ribbons via Elimination Reactions. J. Am. Chem. Soc. 2023, 145, 6203–6209. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, X.; Lin, H.; Liu, M.; Cai, L.; Qiu, X.; Yang, D.; Fan, X.; Qiu, X.; Xu, W. Bond-Scission-Induced Structural Transformation from Cumulene to Diyne Moiety and Formation of Semiconducting Organometallic Polyyne. J. Am. Chem. Soc. 2020, 142, 8085–8089. [Google Scholar] [CrossRef] [PubMed]
- Rashed, E.A.; Palacio, C. Calculations of Constant-Height STM Images of Fullerene C60 Adsorbed onto a Surface. J. Spectrosc. 2023, 2023, 8841630. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y. Direct etching of nano/microscale patterns with both few-layer graphene and high-depth graphite structures by the raster STM electric lithography in the ambient conditions. J. Microsc. 2023, 292, 37–46. [Google Scholar] [CrossRef]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef]
- Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 2012, 4, 215–220. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, R.; Qiu, J.; Liu, R.; Xu, W. On-Surface Synthesis of Carbon Nanostructures. Adv. Mater. 2018, 30, 1705630. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Z.; Xu, W. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Mater. Futures 2022, 1, 032301. [Google Scholar] [CrossRef]
- Liu, G.; Xu, S.G.; Ma, Y.; Shao, X.; Xiong, W.; Wu, X.; Zhang, S.; Liao, C.; Chen, C.; Wang, X.; et al. Arsenic Monolayers Formed by Zero-Dimensional Tetrahedral Clusters and One-Dimensional Armchair Nanochains. ACS Nano 2022, 16, 17087–17096. [Google Scholar] [CrossRef]
- Kunitake, M.; Uemura, S. Construction and Scanning Probe Microscopy Imaging of Two-dimensional Nanomaterials. Chem. Lett. 2020, 49, 565–573. [Google Scholar] [CrossRef]
- Deshpande, A.; Sham, C.H.; Alaboson, J.M.; Mullin, J.M.; Schatz, G.C.; Hersam, M.C. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. J. Am. Chem. Soc. 2012, 134, 16759–16764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, Y.; Yi, Z.; Zhang, C.; Xu, W. Separation of Halogen Atoms by Sodium from Dehalogenative Reactions on a Au(111) Surface. ACS Nano 2024, 18, 9082–9091. [Google Scholar] [CrossRef] [PubMed]
- Judd, C.J.; Junqueira, F.L.Q.; Haddow, S.L.; Champness, N.R.; Duncan, D.A.; Jones, R.G.; Saywell, A. Structural characterisation of molecular conformation and the incorporation of adatoms in an on-surface Ullmann-type reaction. Comm. Chem. 2020, 3, 166. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.A.; Song, F.; Nguyen, M.T.; Li, Z.; Studener, F.; Stohr, M. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111). Chem. Eur. J. 2016, 22, 5937–5944. [Google Scholar] [CrossRef]
- Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M.V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687–691. [Google Scholar] [CrossRef]
- Zint, S.; Ebeling, D.; Schloder, T.; Ahles, S.; Mollenhauer, D.; Wegner, H.A.; Schirmeisen, A. Imaging Successive Intermediate States of the On-Surface Ullmann Reaction on Cu(111): Role of the Metal Coordination. ACS Nano 2017, 11, 4183–4190. [Google Scholar] [CrossRef]
- Kohlmann, T.; Kerzig, C.; Goez, M. Laser-Induced Wurtz-Type Syntheses with a Metal-Free Photoredox Catalytic Source of Hydrated Electrons. Chem. Eur. J 2019, 25, 9991–9996. [Google Scholar] [CrossRef]
- McLeish, T. Physics meets polymerisation chemistry: Modelling the Wurtz reaction. Polym. Int. 2009, 58, 239–241. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ding, Y.; Ma, H.; Yuan, C.; Xu, W. Single-molecule insight into Wurtz reactions on metal surfaces. Phys. Chem. Chem. Phys. 2016, 18, 2730–2735. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, L.; Ding, Y.; Xie, L.; Zhang, C.; Tan, Q.; Xu, W. Dehydrogenative Homocoupling of Terminal Alkenes on Copper Surfaces: A Route to Dienes. Angew. Chem.-Int. Ed. 2015, 54, 4549–4552. [Google Scholar] [CrossRef]
- Cai, L.; Kang, F.; Sun, Q.; Gao, W.; Yu, X.; Ma, H.; Yuan, C.; Xu, W. The Stereoselective Formation of trans-Cumulene through Dehalogenative Homocoupling of Alkenyl gem-Dibromides on Cu(110). ChemCatChem 2019, 11, 5417–5420. [Google Scholar] [CrossRef]
- Cai, L.; Yu, X.; Liu, M.; Sun, Q.; Bao, M.; Zha, Z.; Pan, J.; Ma, H.; Ju, H.; Hu, S.; et al. Direct Formation of C–C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of gem-Dibromomethyl Molecules. ACS Nano 2018, 12, 7959–7966. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wei, D.; Sun, J.; Wong, S.L.; Feng, Y.P.; Neto, A.H.; Wee, A.T. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2012, 2, 983. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, R.; Shen, Z.; Song, Y.; She, L.; Wang, X.; Jia, Y.; Zhang, Z.; Zhang, W. On-Surface Synthesis of Self-Assembled Covalently Linked Wavy Chains with Site-Selective Conformational Switching. J. Am. Chem. Soc. 2023, 145, 1660–1667. [Google Scholar] [CrossRef]
- Hermann Walch, R.G.; Sirtl, T.; Eder, G.; Lackinger, M. Material- and Orientation-Dependent Reactivity for Heterogeneously Catalyzed Carbon-Bromine Bond Homolysis. J. Phys. Chem. C 2010, 114, 12604–12609. [Google Scholar] [CrossRef]
- Fan, Q.; Gottfried, J.M.; Zhu, J. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res 2015, 48, 2484–2494. [Google Scholar] [CrossRef]
- Besenbacher, F. Scanning tunnelling microscopy studies of metal surfaces. Rep. Prog. Phys 1996, 59, 1737–1802. [Google Scholar] [CrossRef]
- Besenbacher, E.L.L.Ö.P.T.P.B.R.I.S.F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542. [Google Scholar] [CrossRef]
- Kresse, G.a.J.F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J.; Hamann, D.R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Han, Z.; Czap, G.; Chiang, C.L.; Xu, C.; Wagner, P.J.; Wei, X.; Zhang, Y.; Wu, R.; Ho, W. Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science 2017, 358, 206–210. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2006, 13, 291–296. [Google Scholar] [CrossRef]
- Houtsma, R.S.K.; van Zuilen, J.; Stöhr, M. On-Surface Ullmann-Type Coupling: Reaction Intermediates and Organometallic Polymer Growth. Adv. Mater. Interfaces 2023, 11, 2300728. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Gong, Y.; Yang, M.; Zhao, M. Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction. Nanomaterials 2025, 15, 407. https://doi.org/10.3390/nano15050407
Pu J, Gong Y, Yang M, Zhao M. Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction. Nanomaterials. 2025; 15(5):407. https://doi.org/10.3390/nano15050407
Chicago/Turabian StylePu, Juxiang, Yongqing Gong, Menghao Yang, and Mali Zhao. 2025. "Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction" Nanomaterials 15, no. 5: 407. https://doi.org/10.3390/nano15050407
APA StylePu, J., Gong, Y., Yang, M., & Zhao, M. (2025). Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction. Nanomaterials, 15(5), 407. https://doi.org/10.3390/nano15050407