Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation
Abstract
1. Introduction
2. Experiments and Methods
3. Results and Discussion
3.1. Device Performance
3.2. Simulation Results
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 January 2025).
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Mu, H.; Zhu, L.; Lin, S.; Zhang, L.; Ding, L. Frontier applications of perovskites beyond photovoltaics. J. Semicond. 2002, 43, 040203. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Kanda, H.; Ding, Y.; Huang, H.; Chen, H.; Ding, B.; Liang, Y.; Liu, X.; Cai, M.; et al. Expanded phase distribution in low average Layer number 2D perovskite films: Toward efficient semitransparent solar cells. Adv. Funct. Mater. 2021, 31, 2104868. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Gao, Z.-J.; Lung, C.-Y.; Shi, Z.-E.; Du, H.-Y.; Su, Y.-W.; Shih, H.-S.; Lee, K.-M.; Hung, H.-H.; Chan, C.K.; et al. Enhancing the Efficiency of Indoor Perovskite Solar Cells through Surface Defect Passivation with Coplanar Heteroacene Cored A–D–A-type Molecules. Adv. Funct. Mater. 2023, 34, 2312819. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 56). Prog. Photovoltaics Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Li, D.; Zhang, D.; Lim, K.; Hu, Y.; Rong, Y.; Mei, A.; Park, N.; Han, H. A Review on Scaling Up Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2008621. [Google Scholar] [CrossRef]
- Philipps, S.P.; Dimroth, F.; Bett, A.W. High-Efficiency III-V Multijunction Solar Cells. In McEvoy’s Handbook of Photovoltaics; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lin, Q.; Wang, Z.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Hybrid Perovskites: Prospects for Concentrator Solar Cells. Adv. Sci. 2018, 5, 1700792. [Google Scholar] [CrossRef]
- Sadhukhan, P.; Roy, A.; Sengupta, P.; Das, S.; Mallick, T.K.; Nazeeruddin, M.K.; Sundaram, S. The emergence of concentrator photovoltaics for perovskite solar cells. Appl. Phys. Rev. 2021, 8, 041324. [Google Scholar] [CrossRef]
- Baig, H.; Kanda, H.; Asiri, A.M.; Nazeeruddin, M.K.; Mallick, T. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustain. Energy Fuels 2020, 4, 528–537. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Wenger, B.; Christoforo, M.G.; Lin, Y.H.; Klug, M.T.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 2018, 3, 855. [Google Scholar] [CrossRef]
- Troughton, J.; Gasparini, N.; Baran, D. Cs0.15FA0.85PbI3 perovskite solar cells for concentrator photovoltaic applications. J. Mater. Chem. A 2018, 6, 21913. [Google Scholar] [CrossRef]
- Simulation Programme SCAPS-1D for Thin Film Solar Cells Developed at ELIS, University of Gent. Available online: https://scaps.elis.ugent.be/ (accessed on 1 June 2022).
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Chen, S.; Shen, N.; Zhang, L.; Kong, W.; Zhang, L.; Cheng, C.; Xu, B. Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A 2019, 7, 9542–9549. [Google Scholar] [CrossRef]
- Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V.S.; Nie, W.; Pearson, A.J.; Puttisong, Y.; Gödel, K.C.; Beere, H.E.; et al. High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics. Adv. Mater. 2017, 29, 1604744. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, Y.; Zhang, Y.; Yan, P.; Li, H.; Sheng, C. Slow Hot-Carrier-Cooling in a 2D Lead-Iodide Perovskite Film and Its Photovoltaic Device. J. Phys. Chem. C 2022, 126, 2374–2382. [Google Scholar] [CrossRef]
- Raifuku, I.; Ishikawa, Y.; Ito, S.; Uraoka, Y. Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions. J. Phys. Chem. C 2016, 120, 18986–18990. [Google Scholar] [CrossRef]
- Ompong, D.; Ram, K.S.; Setsoafia, D.; Rad, H.; Singh, J. Saturation of Open-Circuit Voltage at Higher Light Intensity Caused by Interfacial Defects and Nonradiative Recombination Losses in Perovskite Solar Cells. Adv. Mater. Interfaces 2023, 10, 2201578. [Google Scholar] [CrossRef]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.X.; Zhang, C.; Zhai, Y.; Mielczarek, K.; Wang, W.; Ma, W.; Zakhidov, A.; Vardeny, Z.V. Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics. Phys. Rev. Lett. 2015, 114, 116601. [Google Scholar] [CrossRef] [PubMed]
- Baranowki, M.; Plochocka, P. Excitons in Metal-Halide Perovskites. Adv. Energy Mater. 2020, 10, 1903659. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, B.K.; Dwivedi, D.K. Modeling of highly efcient and low cost CH3NH3Pb(I1−xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 2020, 100, 109631. [Google Scholar] [CrossRef]
- Fang, Z.M.; Sun, J.; Liu, S.Z.; Ding, L.M. Defects in perovskite crystals. J. Semicond. 2023, 44, 080201. [Google Scholar] [CrossRef]
- Chang, C.Y.; Huang, W.K.; Chang, Y.C. Highly-efficient and long-term stable perovskite solar cells enabled by a cross-linkable n-doped hybrid cathode interfacial layer. Chem. Mater. 2016, 28, 6305–6312. [Google Scholar] [CrossRef]
- Grzibovskis, R.; Vembris, A. Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: Case of P3HT:PCBM. J. Mater. Sci. 2018, 53, 7506–7515. [Google Scholar] [CrossRef]
- Ye, M.; He, C.; Iocozzia, J.; Liu, X.; Cui, X.; Meng, J.; Rager, M.; Hong, X.; Liu, X.; Lin, Z. Recent advances in interfacial engineering of perovskite solar cells. J. Phys. D Appl. Phys. 2017, 50, 373002. [Google Scholar] [CrossRef]
- Jahantigh, F.; Safikhani, M.J. The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): A SCAPS-1D simulation study. Appl. Phys. A Mater. Sci. Process. 2019, 125, 276. [Google Scholar] [CrossRef]
- Rai, N.; Rai, S.; Singh, P.K.; Lohia, P.; Dwivedi, D.K. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 2020, 31, 16269–16280. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Liang, C.; Xing, G.; Liu, X.; Li, F.; Liu, X.; Hu, X.; Shao, G.; Song, Y. Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 2018, 30, 1805323. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kober-Czerny, M.; Lin, Y.H.; Ball, J.M.; Sakai, N.; Duijnstee, E.A.; Hong, M.J.; Snaith, H.J. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat. Commun. 2022, 13, 4201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Long, G. Low density of conduction and valence band states contribute to the high open-circuit voltage in perovskite solar cells. J. Phys. Chem. C 2017, 121, 1455–1462. [Google Scholar] [CrossRef]
- Yamashita, M.; Otani, C.; Okuzaki, H.; Shimizu, M. Nondestructive measurement of carrier mobility in conductive polymer PEDOT:PSS using Terahertz and infrared spectroscopy. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Rutledge, S.; Helmy, A. Carrier mobility enhancement in poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys. 2013, 114, 133708. [Google Scholar] [CrossRef]
- Lee, J.; Baik, S. Enhanced crystallinity of CH3NH3PbI3 by the pre-coordination of PbI2–DMSO powders for highly reproducible and efficient planar heterojunction perovskite solar cells. RSC Adv. 2018, 8, 1005–1013. [Google Scholar] [CrossRef]
- Klingshirn, C.F. Semiconductor Optics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Taheri, S.; Minbashi, M.; Hajjiah, A. Effect of defects on high efficient perovskite solar cells. Opt. Mater. 2021, 111, 110601. [Google Scholar] [CrossRef]
- Algor, C.; Ortiz, E.; Rey-Stolle, I.; Díaz, V.; Peña, R.; Andreev, V.M.; Khvostikov, V.P.; Rumyantsev, V.D. A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Trans. Electron Devices 2021, 48, 840–844. [Google Scholar] [CrossRef]
PCBM | MAPbI3 | PEDOT:PSS | |
---|---|---|---|
Thickness (nm) | 50 | 500 | 100 |
Bandgap (eV) | 1.8 [26,27] | 1.5 [28] | 2.2 [29] |
Electron affinity (eV) | 4.1 [26] | 3.9 [28] | 2.9 [29] |
Relative dielectric constant | 3.9 [30] | 32 [31] | 3 [29] |
Effective state density of conduction band (cm−3) | 2.5 × 1021 [30] | 2.49 × 1018 [32] | 1 × 1019 [29] |
Effective state density of valance band (cm−3) | 2.5 × 1021 [30] | 6.98 × 1018 [32] | 1 × 1019 [33] |
Hole mobility (cm2/V·s) | 2 × 10−1 [30] | 2 [34] | 0.01 [34] |
Electron mobility (cm2/V·s) | 2 × 10−1 [30] | 2 [34] | 7.7 × 10−1 [35] |
Defect type | Neutral | Neutral | Neutral |
Defect density (cm−3) | 1 × 1015 [30] | ** | 3.7 × 1017 [36] |
Series resistance (Ω·cm2) | 4.5 [37] | ||
Shunt resistance (Ω·cm2) | 3000 [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, Y.; Zhu, M.; Yan, P.; Sheng, C. Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials 2025, 15, 286. https://doi.org/10.3390/nano15040286
Li H, Huang Y, Zhu M, Yan P, Sheng C. Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials. 2025; 15(4):286. https://doi.org/10.3390/nano15040286
Chicago/Turabian StyleLi, Heng, Yongtao Huang, Muyan Zhu, Pingyuan Yan, and Chuanxiang Sheng. 2025. "Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation" Nanomaterials 15, no. 4: 286. https://doi.org/10.3390/nano15040286
APA StyleLi, H., Huang, Y., Zhu, M., Yan, P., & Sheng, C. (2025). Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials, 15(4), 286. https://doi.org/10.3390/nano15040286