Curcumin-Loaded Nanoscale Metal–Organic Frameworks for Therapeutic Applications in Cancer
Abstract
1. Introduction
2. Fabrication and Characterization of MOFs
3. MOFs for Drug Delivery: Loading and Release
4. Curcumin-Loaded Nanoparticles for Drug Delivery and Cancer Therapy
5. MOFs for Delivery of Curcumin Against Cancer
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AlMOF | Aluminum fumarate metal–organic framework |
| BET | Brunauer–Emmett–Teller |
| CD-MOFs | Cyclodextrin-based metal–organic frameworks |
| CMC | Carboxymethyl cellulose |
| DDSs | Drug-delivery systems |
| DOX | Doxorubicin |
| EPR | Enhanced permeability and retention |
| FA | Folic acid |
| FBF | Fenbufen |
| GA | L-glutamic acid |
| HIF-2α | Hypoxia-inducible factor 2α |
| IBU | Ibuprofen |
| IC50 | Half-maximal inhibitory concentration |
| ICP-MS | Inductively coupled plasma mass spectrometry |
| IR | Infrared radiation |
| JNK | c-Jun N-terminal kinase |
| κ-Cr | κ-carrageenan |
| MAPK | Mitogen-activated protein kinase |
| MOFs | Metal–organic frameworks |
| MMP | Matrix metalloproteinase |
| MSNs | Mesoporous silica nanoparticles |
| NCDs | Noncommunicable diseases |
| NF-κB | Nuclear factor kappa B |
| NMR | Nuclear magnetic resonance |
| PI3K/Akt | Phosphoinositide 3-kinase/protein kinase B |
| PLGA | Poly (lactic-co-glycolic acid) |
| PSM | Post-synthetic modification |
| PXRD | Powder X-ray diffraction |
| RGD | Arginine–glycine–aspartic acid |
| ROS | Reactive oxygen species |
| SA | Sodium alginate |
| SCXRD | Single-crystal X-ray diffraction |
| SEM | Scanning electron microscopy |
| siRNA | Small interfering RNA |
| SLNs | Solid lipid nanoparticles |
| STAT3 | Signal transducer and activator of transcription 3 |
| TEM | Transmission electron microscopy |
| TGA | Thermogravimetric analysis |
| TNBC | Triple-negative breast cancer |
| XPS | X-ray photoelectron spectroscopy |
| ZIF-8 | Zeolitic imidazolate framework-8 |
References
- Varghese, C.; Prem, A.; Nongkynrih, B.; Chattu, V.K.; Mikkelsen, B. Fourth UNHLM on noncommunicable diseases 2025: An opportunity to bridge the transcending priorities for impact in global south. PLoS Glob. Public Health 2025, 5, e0004287. [Google Scholar] [CrossRef]
- Casolino, R.; Mikkelsen, B.; Ilbawi, A. Elevating cancer on the global health agenda: Towards the fourth high-level meeting on NCDs 2025. Ann. Oncol. 2024, 35, 933–935. [Google Scholar] [CrossRef]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.; Guan, X. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-D.; Pang, K.; Wu, Z.-X.; Dong, Y.; Hao, L.; Qin, J.-X.; Wang, W.; Chen, Z.-S.; Han, C.-H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023, 8, 113. [Google Scholar] [CrossRef]
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers 2022, 14, 6203. [Google Scholar] [CrossRef]
- Yang, L.J.; Han, T.; Liu, R.N.; Shi, S.M.; Luan, S.Y.; Meng, S.N. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed. Pharmacother. 2024, 177, 117099. [Google Scholar] [CrossRef]
- Shrihastini, V.; Muthuramalingam, P.; Adarshan, S.; Sujitha, M.; Chen, J.-T.; Shin, H.; Ramesh, M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers 2021, 13, 6222. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Tutunchi, H.; Naeini, F.; Vajdi, M.; Mobasseri, M.; Najafipour, F. The therapeutic effects and mechanisms of action of resveratrol on polycystic ovary syndrome: A comprehensive systematic review of clinical, animal and in vitro studies. Clin. Exp. Pharmacol. Physiol. 2022, 49, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef]
- Naeini, F.; Tutunchi, H.; Razmi, H.; Mahmoodpoor, A.; Vajdi, M.; Azar, P.S.; Najifipour, F.; Tarighat-Esfanjani, A.; Karimi, A. Does nano-curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J. Food Biochem. 2022, 46, e14093. [Google Scholar] [CrossRef]
- Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother. Res. 2020, 34, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yuan, S.; Yue, Z.; Zhang, L.; Chen, S.; Qian, Q.; Fu, Q.; Chen, Y. Suppressive effect of curcumin on apoptosis of articular chondrocytes via regulation on NF-κB pathway and NLRP3 inflammasome. Cytotechnology 2025, 77, 52. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020, 159, 104921. [Google Scholar] [CrossRef]
- Prakobwong, S.; Gupta, S.C.; Kim, J.H.; Sung, B.; Pinlaor, P.; Hiraku, Y.; Wongkham, S.; Sripa, B.; Pinlaor, S.; Aggarwal, B.B. Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis 2011, 32, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, P.; Law, S.; Tian, H.; Leung, W.; Xu, C. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects. Front. Pharmacol. 2018, 9, 1374. [Google Scholar] [CrossRef]
- Aoki, H.; Takada, Y.; Kondo, S.; Sawaya, R.; Aggarwal, B.B.; Kondo, Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol. 2007, 72, 29–39. [Google Scholar] [CrossRef]
- Lin, L.; Hutzen, B.; Ball, S.; Foust, E.; Sobo, M.; Deangelis, S.; Pandit, B.; Friedman, L.; Li, C.; Li, P.; et al. New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci. 2009, 100, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Siwak, D.R.; Shishodia, S.; Aggarwal, B.B.; Kurzrock, R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 2005, 104, 879–890. [Google Scholar]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Wahnou, H.; El Kebbaj, R.; Liagre, B.; Sol, V.; Limami, Y.; Duval, R.E. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025, 17, 114. [Google Scholar] [CrossRef]
- Omidian, H.; Wilson, R.L.; Chowdhury, S.D. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023, 9, 596. [Google Scholar] [CrossRef]
- Rajabzadeh-Khosroshahi, M.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Rasekh, B. Chitosan/agarose/graphitic carbon nitride nanocomposite as an efficient pH-sensitive drug delivery system for anticancer curcumin releasing. J. Drug Deliv. Sci. Technol. 2022, 74, 103443. [Google Scholar] [CrossRef]
- Meng, R.; Wu, Z.; Xie, Q.T.; Cheng, J.S.; Zhang, B. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chem. 2021, 340, 127893. [Google Scholar] [CrossRef]
- Jain, K.K. An Overview of Drug Delivery Systems. Methods Mol. Biol. 2020, 2059, 1–54. [Google Scholar]
- Large, D.; Abdelmessih, R.; Fink, E.; Auguste, D. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Ramsey, J.; Victorovich Kabanov, A. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- de Sousa, A.L.M.D.; dos Santos, W.M.; de Souza, M.L.; Silva, L.C.P.B.B.; Yun, A.E.H.K.; Aguilera, C.S.B.; de França Chagas, B.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Layered Double Hydroxides as Promising Excipients for Drug Delivery Purposes. Eur. J. Pharm. Sci. 2021, 165, 105922. [Google Scholar] [CrossRef]
- Sábio, R.M.; Meneguin, A.B.; Ribeiro, T.C.; Silva, R.R.; Chorilli, M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int. J. Pharm. 2019, 564, 379–409. [Google Scholar] [CrossRef]
- Samimi, S.; Shafiee Ardestani, M.; Dorkoosh, F. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J. Drug Deliv. Sci. Technol. 2021, 61, 102287. [Google Scholar] [CrossRef]
- Li, B.; Setyawati, M.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.; Garaj, S.; Leong, D. Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Liao, Q.; Liu, Y.; Xi, K.; Huang, W.; Jia, X. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018, 9, 2785. [Google Scholar] [CrossRef]
- Alanagh, H.R.; Rostami, I.; Taleb, M.; Gao, X.; Zhang, Y.; Khattak, A.M.; He, X.; Li, L.; Tang, Z. Covalent organic framework membrane for size selective release of small molecules and peptide in vitro. Mater. Chem. B 2020, 8, 7899–7903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619. [Google Scholar] [CrossRef] [PubMed]
- Heydarinasab, H.; Sadeghi, F.H.; Mohammadloo, H.E.; Ramezanzadeh, B. Multi-metal/ligand MOFs: Transformative materials for energy storage, photocatalysis, and sensor technologies. Adv. Colloid Interface Sci. 2025, 344, 103592. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-X.; Pan, W.-L.; Niu, R.-J.; Liu, Y.; Chen, J.-X.; Zhang, W.-H.; Lang, J.-P.; Young, D.J. Effective loading of cisplatin into a nanoscale UiO-66 metal-organic framework with preformed defects. Dalton Trans. 2019, 48, 5308–5314. [Google Scholar] [CrossRef] [PubMed]
- Nezhad-Mokhtari, P.; Arsalani, N.; Javanbakht, S.; Shaabani, A. Development of gelatin microsphere encapsulated Cu-based metal-organic framework nanohybrid for the methotrexate delivery. J. Drug Deliv. Sci. Technol. 2019, 50, 174–180. [Google Scholar] [CrossRef]
- Xue, Z.; Zhu, M.; Dong, Y.; Feng, T.; Chen, Z.; Feng, Y.; Shan, Z.; Xu, J.; Meng, S. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. Nanoscale 2019, 11, 11709–11718. [Google Scholar] [CrossRef]
- Ke, X.; Song, X.; Qin, N.; Cai, Y.; Ke, F. Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery. J. Porous Mater. 2018, 26, 813–818. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2018, 6, 1801526. [Google Scholar] [CrossRef]
- Lawson, S.; Newport, K.; Pederniera, N.; Rownaghi, A.; Rezaei, F. Curcumin Delivery on Metal–Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS Appl. Bio Mater. 2021, 4, 3423–3432. [Google Scholar] [CrossRef]
- Azzi, P.; Kurdi, R.; Patra, D. Curcumin Encapsulation in Aluminum Fumarate Metal–Organic Frameworks for Enhanced Stability and Antioxidant Activity. ACS Omega 2024, 9, 50561−50569. [Google Scholar] [CrossRef]
- Nabipour, H.; Aliakbari, F.; Volkening, K.; Strong, M.; Rohani, S. The development of a bio-based metal-organic framework coated with carboxymethyl cellulose with the ability to deliver curcumin with anticancer properties. Mater. Today Chem. 2024, 37, 101976. [Google Scholar] [CrossRef]
- Karimi Alavijeh, R.; Akhbari, K. Improvement of curcumin loading into a nanoporous functionalized poor hydrolytic stable metal-organic framework for high anticancer activity against human gastric cancer AGS cells. Colloids Surf. B Biointerfaces 2022, 212, 112340. [Google Scholar] [CrossRef]
- Mozafari, M. (Ed.) BioMOFs. In Metal-Organic Frameworks for Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2020; pp. 321–345. [Google Scholar]
- Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, R.; Mathew, T.; Kumar, H.; Singhal, A.; Thomas, L. Metal-organic frameworks: Recent advances in synthesis strategies and applications. Inorg. Chem. Commun. 2024, 162, 112223. [Google Scholar] [CrossRef]
- Nabipour, H.; Rohani, S. Metal–Organic Frameworks for Overcoming the Blood–Brain Barrier in the Treatment of Brain Diseases: A Review. Nanomaterials 2024, 14, 1379. [Google Scholar] [CrossRef] [PubMed]
- Nabipour, H.; Hu, Y. Development of fully bio-based pectin/curcumin@bio-MOF-11 for colon specific drug delivery. Chem. Pap. 2022, 76, 2969–2979. [Google Scholar] [CrossRef]
- Nabipour, H.; Aliakbari, F.; Volkening, K.; Strong, M.; Rohani, S. New metal-organic framework coated sodium alginate for the delivery of curcumin as a sustainable drug delivery and cancer therapy system. Int. J. Biol. Macromol. 2024, 259, 128875. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Wang, H.S.; Wang, Y.H.; Ding, Y. Development of biological metal–organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2020, 2, 3788–3797. [Google Scholar] [CrossRef]
- Singh, N.; Qutub, S.; Khashab, N. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 2021, 9, 5925–5934. [Google Scholar] [CrossRef]
- Safdar Ali, R.; Meng, H.; Li, Z. Zinc-based metal-organic frameworks in drug delivery, cell imaging, and sensing. Molecules 2021, 27, 100. [Google Scholar] [CrossRef]
- Mhettar, P.; Kale, N.; Pantwalawalkar, J.; Nangare, S.; Jadhav, N. Metal-organic frameworks: Drug delivery applications and future prospects. ADMET DMPK 2023, 12, 27–62. [Google Scholar] [CrossRef]
- Nadizadeh, Z.; Naimi-Jamal, R.; Panahi, L. Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery. J. Solid State Chem. 2018, 259, 35–42. [Google Scholar] [CrossRef]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal-Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, Y.; Han, L.; Singh, V.; Xu, X.; Guo, T.; Meng, F.; Xu, X.; York, P.; Liu, Z.; et al. Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst. Growth Des. 2017, 17, 1654–1660. [Google Scholar] [CrossRef]
- Liu, J.; Bao, T.-Y.; Yang, X.-Y.; Zhu, P.-P.; Wu, L.-H.; Sha, J.-Q.; Zhang, L.; Dong, L.-Z.; Cao, X.-L.; Lan, Y.-Q. Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem. Commun. 2017, 53, 7804–7807. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal–organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B. Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012, 41, 6906–6909. [Google Scholar] [CrossRef]
- He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; et al. Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B 2021, 11, 2362–2395. [Google Scholar] [CrossRef]
- Morris, W.; Briley, W.E.; Auyeung, E.; Cabezas, M.D.; Mirkin, C.A. Nucleic Acid-Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, Y.; Wu, W.; Zhe, M.; Yu, P.; Shakya, S.; Li, Z.; Xing, F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: Advances, challenges, and future perspectives. J. Nanobiotechnol. 2025, 23, 157. [Google Scholar] [CrossRef]
- Benny, A.; Pai, S.; Pinheiro, D.; Chundattu, S. Metal organic frameworks in biomedicine: Innovations in drug delivery. Results Chem. 2024, 7, 101414. [Google Scholar] [CrossRef]
- Lin, W.; Cui, Y.; Yang, Y.; Hu, Q.; Qian, G. A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans. 2018, 47, 15882–15887. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Hou, Y.-K.; Chen, M.-W.; Yu, X.-Z.; Chen, S.-Y.; Yue, Y.-R.; Guo, X.-T.; Chen, J.-X.; Zhou, Q. pH-responsive metal-organic framework for the co-delivery of HIF-2α SiRNA and curcumin for enhanced therapy of osteoarthritis. J. Nanobiotechnol. 2023, 21, 18. [Google Scholar] [CrossRef]
- Yan, Y.; Kulsoom Sun, Y.; Li, Y.; Wang, Z.; Xue, L.; Wang, F. Advancing cancer therapy: Nanomaterial-based encapsulation strategies for enhanced delivery and efficacy of curcumin. Mater. Today Bio 2025, 33, 101963. [Google Scholar] [CrossRef]
- Xu, X.; Lü, S.; Wu, C.; Wang, Z.; Feng, C.; Wen, N.; Liu, M.; Zhang, X.; Liu, Z.; Liu, Y.; et al. Curcumin polymer coated, self-fluorescent and stimuli-responsive multifunctional mesoporous silica nanoparticles for drug delivery. Microporous Mesoporous Mater. 2018, 271, 234–242. [Google Scholar] [CrossRef]
- Liang, J.; Dong, X.; Yang, A.; Zhu, D.; Kong, D.; Lv, F. A dual fluorescent reverse targeting drug delivery system based on curcumin-loaded ovalbumin nanoparticles for allergy treatment. Nanomedicine 2019, 16, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Qiu, N.; Du, X.; Ji, J.; Zhai, G. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev. Ind. Pharm. 2021, 47, 839–856. [Google Scholar] [CrossRef]
- Lai, H.; Ding, X.; Ye, J.; Deng, J.; Cui, S. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf. B Biointerfaces 2021, 198, 111455. [Google Scholar] [CrossRef]
- Dutta, B.; Barick, K.C.; Hassan, P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci. 2021, 296, 102509. [Google Scholar] [CrossRef]
- Babaei, A.; Ebrahimi, H.; Kouchaksaraei, T.S.; Hamidi, S.M.; Khazaeialiabad, M.; Siahposht-Khachaki, A.; Ebrahimnejad, P. Development and optimization of curcumin-loaded solid lipid nanoparticles using Box-Behnken design and evaluation of its efficacy in modulating morphine-induced conditioned place preference: In vivo and in silico studies. J. Drug Target. 2025, 33, 1145–1166. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Sun, Q.; Yu, Y.; Bao, J. Nanocurcumin in myocardial infarction therapy: Emerging trends and future directions. Front. Bioeng. Biotechnol. 2025, 12, 1511331. [Google Scholar] [CrossRef]
- Moradi, M.; Aliomrani, M.; Tangestaninejad, S.; Varshosaz, J.; Kazemian, H.; Emami, F.; Rostami, M. Hyaluronic acid targeted metal organic framework based on iron (III) for delivery of platinum curcumin cytotoxic agent to triple negative breast cancer cell line. Appl. Organomet. Chem. 2022, 36, e6755. [Google Scholar] [CrossRef]
- Laha, D.; Pal, K.; Chowdhuri, A.R.; Parida, P.K.; Sahu, S.K.; Jana, K.; Karmakar, P. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J. Chem. 2019, 43, 217–229. [Google Scholar] [CrossRef]
- Bazzazan, S.; Moein, K.; Lalami, Z.; Bazzazan, S.; Mehrarya, M.; Eshrati Yeganeh, F.; Hejabi, F.; Akbarzadeh, I.; Noorbazargan, H.; Jahanbakhshi, M.; et al. Engineered UIO-66 metal-organic framework for delivery of curcumin against breast cancer cells: An in vitro evaluation. J. Drug Deliv. Sci. Technol. 2022, 79, 104009. [Google Scholar] [CrossRef]
- Babaei, M.; Abrishami, A.; Iranpour, S.; Saljooghi, A.S.; Matin, M.M. Harnessing curcumin in a multifunctional biodegradable metal organic framework (bio-MOF) for targeted colorectal cancer theranostics. Drug Deliv. Transl. Res. 2025, 15, 1719–1738. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Lin, Q.; Liu, N.; Jin, Q.; Liu, C.; Wang, Y.; Zhu, X.; Zong, L. Copper-based metal-organic framework co-loaded doxorubicin and curcumin for anti-cancer with synergistic apoptosis and ferroptosis therapy. Int. J. Pharm. 2024, 666, 124744. [Google Scholar] [CrossRef]
- Nabipour, H.; Aliakbari, F.; Volkening, K.; Strong, M.J.; Rohani, S. Novel metal-organic framework coated with chitosan-κ-carrageenan as a platform for curcumin delivery to cancer cells. Int. J. Biol. Macromol. 2025, 301, 140027. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Abbastabar, M.; Alaghi, A.; Heshmati, J.; Crowe, F.L.; Sepidarkish, M. Curcumin on Human. Health: A Comprehensive Systematic Review and Meta-Analysis of 103 Randomized Controlled Trials. Phytother. Res. 2024, 38, 6048–6061. [Google Scholar] [CrossRef]
| Study (Ref.) | MOF Type/Composition | Target Cancer/Cell Line | Functional Modification/Coating | Key Findings |
|---|---|---|---|---|
| Moradi et al. [82] | NH2-MIL-101(Fe)-based (Pt–Curcumin@MIL@HA) | Triple-negative breast cancer (MDA-MB-231) | HA targeting | Enhanced cytotoxicity vs. free drug; HA improved uptake and tumor selectivity |
| Laha et al. [83] | IRMOF-3 and FA-conjugated IRMOF-3@Curcumin | Triple-negative breast cancer (TNBC) | Folic acid targeting | Induced apoptosis via Bax/Bcl-2 modulation and p53 activation; reduced tumor volume |
| Alavijeh et al. [48] | Zn-based DMOF-1 and DMOF-1–NO2 | Gastric cancer (AGS) | None | Improved solubility and enhanced cytotoxicity vs. free curcumin |
| Nabipour and Hu [53] | Pectin-coated Bio-MOF-11 (Curcumin@Bio-MOF-11) | Colon carcinoma (SW489) | Pectin coating | Controlled, pH-responsive release; superior cytotoxicity and colonic targeting |
| Bazzazan et al. [84] | UIO-66–Curcumin | Breast cancer | None | Enhanced apoptosis via caspase-3/9 activation; reduced IC50; downregulated MMP-2/9 and cyclins D/E |
| Nabipour et al. [47] | Bio-Schiff base Cu–MOF (Curcumin@Bio-MOF) | Cervical (HeLa) | CMC coating | pH-sensitive hydrogel achieved sustained release and enhanced anticancer activity |
| Nabipour et al. [54] | Zn–MOF with Schiff base ligand | HeLa, HEK293, SH-SY5Y | SA coating | Controlled pH-dependent release (78.9% at pH 5.0); strong anticancer activity with sustained release |
| Babaei et al. [85] | Bio-MOF (Fe-based, PEGylated, Aptamer-functionalized) | Colorectal cancer (HT-29) | PEG + EpCAM aptamer + DOX co-loading | High tumor-specific cytotoxicity; significant tumor inhibition in mice |
| Guo et al. [86] | Cu–MOF-199 (Curcumin@DOX@MOF-199) | Breast cancer (MCF-7) | DOX co-loading | Induced apoptosis and ferroptosis; strong in vivo tumor suppression with low toxicity |
| Nabipour et al. [87] | Curcumin@UWO-2 and CS–κ-Cr/Curcumin@UWO-2 | General cancer models | κ-carrageenan + chitosan composite | Enhanced stability, sustained release, and improved cytotoxicity |
| MOF System (Ref.) | Drug Loading/Entrapment Efficiency | Release Behavior | IC50/Cytotoxicity Performance | Targeting/Functional Features |
|---|---|---|---|---|
| NH2-MIL-101(Fe)-based (Pt–Curcumin@MIL@HA [82] | Not reported | Sustained release; enhanced uptake under acidic tumor-like conditions | Higher cytotoxicity than free drug in MDA-MB-231 triple-negative breast cancer cells | HA enables receptor-mediated active targeting |
| IRMOF-3@Curcumin@FA [83] | Not reported | Controlled release | Strong apoptosis; improved survival in triple-negative breast cancer (TNBC) mouse model | FA enhances tumor selectivity |
| DMOF-1/DMOF-1-NO2 (Zn-based) [48] | Improved encapsulation; NO2 derivative shows superior loading | Not reported | Higher cytotoxicity vs. free curcumin in AGS cells | NO2 functional group strengthens interactions |
| Pectin-Coated Curcumin@Bio-MOF-11 [53] | EE ≈ 84.35% | Sustained, pH-responsive colonic release | Higher cytotoxicity vs. free curcumin in SW489 cells | Pectin coating ensures colon-specific release |
| UIO-66@Curcumin [84] | Not reported | Stable, controlled release | Lower IC50; caspase-3/9 activation; MMP-2/9 inhibition | Stable zirconium-MOF enhances apoptosis and suppresses metastasis |
| CMC/Curcumin@Bio-MOF (Cu-based) [47] | EE ≈ 84.35%; Loading ≈ 28% | pH-dependent, sustained release | Enhanced cytotoxicity and cellular uptake | CMC improves biocompatibility & pH responsiveness |
| SA-Coated Curcumin@Zn-MOF [54] | Not reported | pH-responsive release: 78.9% (pH 5) vs. 50% (pH 7.4) | Apoptosis in HeLa, HEK293, SH-SY5Y cells | SA enhances stability and controlled delivery |
| Apt-PEG-MOF@DOX (Curcumin-Ligand Bio-MOF) [85] | DOX-loaded system | Controlled release | Selective cytotoxicity toward HT-29 cells; low toxicity in normal cells | EpCAM aptamer provides cancer-specific targeting |
| Curcumin@DOX@MOF-199 (Cu-based) [86] | Co-loading of DOX + curcumin | Sustained dual-drug release | Synergistic ferroptosis + apoptosis; strong tumor inhibition | Dual-drug therapeutic nanoplatform |
| Curcumin@UWO-2/CS-κ-Cr/Curcumin@UWO-2 [87] | High loading; increased with polymer | Controlled release; reduced burst with CS/κ-Cr coating | Strong cytotoxicity; improved safety profile | Biocomposite improves biocompatibility and sustained release |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutunchi, H.; Nabipour, H.; Rohani, S. Curcumin-Loaded Nanoscale Metal–Organic Frameworks for Therapeutic Applications in Cancer. Nanomaterials 2025, 15, 1869. https://doi.org/10.3390/nano15241869
Tutunchi H, Nabipour H, Rohani S. Curcumin-Loaded Nanoscale Metal–Organic Frameworks for Therapeutic Applications in Cancer. Nanomaterials. 2025; 15(24):1869. https://doi.org/10.3390/nano15241869
Chicago/Turabian StyleTutunchi, Helda, Hafezeh Nabipour, and Sohrab Rohani. 2025. "Curcumin-Loaded Nanoscale Metal–Organic Frameworks for Therapeutic Applications in Cancer" Nanomaterials 15, no. 24: 1869. https://doi.org/10.3390/nano15241869
APA StyleTutunchi, H., Nabipour, H., & Rohani, S. (2025). Curcumin-Loaded Nanoscale Metal–Organic Frameworks for Therapeutic Applications in Cancer. Nanomaterials, 15(24), 1869. https://doi.org/10.3390/nano15241869

