Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Se-MT
2.2. Preparation of the Sb2Se3-MW
2.3. Preparation of the Sb2Se3-MW/Se-MT and the Sb2Se3-MW/Se-MT/Ag-NW Heterojunctions
2.4. Material Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Xu, G.H.; Tan, J.; Wang, X.; Zhang, Y.L.; Ma, L.; Chen, W.; Wang, K. Nanophotonic structures energized short-wave infrared quantum dot photodetectors and their advancements in imaging and large-scale fabrication techniques. Nanoscale 2025, 17, 8239–8269. [Google Scholar] [CrossRef]
- Zhang, X.W.; Li, W.Z.; Xie, F.S.; Wang, K.; Li, G.K.; Liu, S.L.; Wang, M.Y.; Tang, Z.J.; Zeng, L.H. Metamaterials for high-performance photodetectors. Appl. Phys. Rev. 2024, 11, 041316. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Li, J.; Liu, B.; Liu, F. Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials. Nanomaterials 2025, 15, 431. [Google Scholar] [CrossRef]
- Huang, Y.; Li, P.; Yu, X.; Feng, S.; Jiang, Y.; Yu, P. CNT:TiO2-Doped Spiro-MeOTAD/Selenium Foam Heterojunction for High-Stability Self-Powered Broadband Photodetector. Nanomaterials 2025, 15, 916. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Li, Z.X.; Li, D.Y.; Chen, P.; Pi, L.J.; Zhou, X.; Zhai, T.Y. Van der Waals Integration Based on Two-Dimensional Materials for High-Performance Infrared Photodetectors. Adv. Funct. Mater. 2021, 31, 23. [Google Scholar] [CrossRef]
- Abdullah, M.; Younis, M.; Sohail, M.T.; Asif, M.; Jinde, Y.; Peiguang, Y.; Junle, Q.; Ping, Z. Recent advancements in novel quantum 2D layered materials hybrid photodetectors from IR to THz: From principles to performance enhancement strategies. Chem. Eng. J. 2025, 504, 158917. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Lin, Y.H.; Hu, Y.B.; Wang, W.Z.; Chen, Y.M.; Liu, Z.H.; Wan, D.; Liao, W.G. 1D/2D Heterostructures: Synthesis and Application in Photodetectors and Sensors. Nanomaterials 2024, 14, 1724. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; Xie, R.Z.; Liu, A.N.; Dai, F.X.; Chen, Y.; Xu, T.F.; Wang, H.L.; Wang, Z.; Liao, L.; et al. Next-Generation Photodetectors beyond Van Der Waals Junctions. Adv. Mater. 2023, 36, 2301197. [Google Scholar] [CrossRef]
- Li, J.P.; Cheng, W.; Dong, J.B.; Cao, Z.X.; Hu, S.H.; Meng, R.T.; Xu, X.J.; Wu, X.; Wu, L.; Zhang, Y. Ultra-High Performance Broadband Self-Powered Photodetector Based on Modified Sb2Se3/ZnO Heterojunction. Adv. Opt. Mater. 2025, 13, 2402264. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Kim, H. Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy 2024, 127, 109725. [Google Scholar] [CrossRef]
- Vidyanagar, A.V.; Benny, S.; Bhat, S.V. Antisolvent Treatment for Antimony Selenide Thin Film Augmenting Optoelectronic Performance. Adv. Opt. Mater. 2025, 13, 2500175. [Google Scholar] [CrossRef]
- Cao, Y.; Qu, P.; Wang, C.G.; Zhou, J.; Li, M.H.; Yu, X.M.; Yu, X.; Pang, J.B.; Zhou, W.J.; Liu, H.; et al. Epitaxial Growth of Vertically Aligned Antimony Selenide Nanorod Arrays for Heterostructure Based Self-Powered Photodetector. Adv. Opt. Mater. 2022, 10, 2200816. [Google Scholar] [CrossRef]
- Suleman, M.; Kim, M.; Rehmat, A.; Elahi, E.; Asim, M.; Riaz, M.; Kumar, S.; Jung, J.; Seo, Y. Exploring Double NDR Modulation and UV-NIR Photodetection in MoS2/Sb2Se3 Heterostructures. Adv. Opt. Mater. 2025, 13, e01177. [Google Scholar] [CrossRef]
- Anandan, R.; Malar, P. Broadband feeble light detection using n-Si/ quasi-1D Sb2Se3 heterojunction photodetectors. Sens. Actuators A Phys. 2025, 387, 116428. [Google Scholar] [CrossRef]
- Liu, J.J.; Chen, Z.B.; Wu, C.; Yu, X.M.; Yu, X.; Chen, C.; Li, Z.H.; Qiao, Q.; Cao, Y.; Zhou, Y.T. Recent Advances in Antimony Selenide Photodetectors. Adv. Mater. 2024, 36, e2406028. [Google Scholar] [CrossRef]
- Wen, X.X.; Lu, Z.H.; Li, B.X.; Wang, G.C.; Washington, M.A.; Zhao, Q.; Lu, T.M. Free-standing [001]-oriented one-dimensional crystal-structured antimony selenide films for self-powered flexible near-infrared photodetectors. Chem. Eng. J. 2023, 462, 142026. [Google Scholar] [CrossRef]
- Zhai, T.Y.; Ye, M.F.; Li, L.; Fang, X.S.; Liao, M.Y.; Li, Y.F.; Koide, Y.; Bando, Y.; Golberg, D. Single-Crystalline Sb2Se3 Nanowires for High-Performance Field Emitters and Photodetectors. Adv. Mater. 2010, 22, 4530–4533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Liu, C.; Shen, K.; Sun, P.; Li, W.J.; Zhao, C.; Ji, Z.; Mai, Y.H.; Mai, W.J. Underwater Multispectral Computational Imaging Based on a Broadband Water-Resistant Sb2Se3 Heterojunction Photodetector. Acs Nano 2022, 16, 5820–5829. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y.; Yu, X.; Qiang, P.; Wang, K.; Cai, X.; Tan, S.; Liu, P.; Song, J.; Mai, W. Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 2014, 10, 108–116. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, X.S.; Wang, F.X.; Luo, Q.; Zhang, X.H.; Wan, X.; Xu, Y.; Fan, X.P. Facile synthesis of hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure for high performance photodetectors. Nanoscale 2016, 8, 2277–2283. [Google Scholar] [CrossRef]
- Bae, J.; Song, M.K.; Park, Y.J.; Kim, J.M.; Liu, M.; Wang, Z.L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. Engl. 2011, 50, 1683–1687. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Gu, J.; Yu, F.; Chen, J.; Lu, W.; Chen, X. High-Stability WSe2 Homojunction Photodetectors via Asymmetric Schottky and PIN Architectures. Coatings 2025, 15, 301. [Google Scholar] [CrossRef]
- Xu, M.; Lan, C.; Zeng, J.; Yin, Y.; Li, C. Research Progress on TeSe-Alloy-Based Heterojunction Photodetectors. Photonics 2025, 12, 1190. [Google Scholar] [CrossRef]
- Hu, K.; Chen, H.Y.; Jiang, M.M.; Teng, F.; Zheng, L.X.; Fang, X.S. Broadband Photoresponse Enhancement of a High-Performance t-Se Microtube Photodetector by Plasmonic Metallic Nanoparticles. Adv. Funct. Mater. 2016, 26, 6641–6648. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wu, D.; Lin, S.H.; Xie, C.; Yuan, H.Y.; Lu, W.; Lau, S.P.; Chai, Y.; Luo, L.B.; Li, Z.J.; et al. Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Adv. Funct. Mater. 2019, 29, 1806878. [Google Scholar] [CrossRef]
- Zheng, T.X.; Du, Q.Y.; Wang, W.W.; Duan, W.; Feng, S.L.; Chen, R.P.; Wan, X.; Jiang, Y.F.; Yu, P.P. High performance and self-powered photodetectors based on Se/CsPbBr3 heterojunctions. J. Mater. Chem. C 2023, 11, 3841–3847. [Google Scholar] [CrossRef]
- Yu, X.W.; Huang, Y.X.; Li, P.F.; Feng, S.L.; Wan, X.; Jiang, Y.F.; Yu, P.P. Self-Powered Photodetectors with High Stability Based on Se Paper/P3HT:Graphene Heterojunction. Nanomaterials 2024, 14, 1923. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.P.; Du, Q.Y.; Zheng, T.X.; Wang, W.W.; Wan, X.; Jiang, Y.F. Reduced Graphene Oxide/Se Microtube p-p Heterojunction for Self-Powered UV-NIR Broadband Photodetectors. Acs Appl. Nano Mater. 2024, 7, 5103–5112. [Google Scholar] [CrossRef]
- Zhang, J.R.; Ma, C. Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors. Nanomaterials 2025, 15, 816. [Google Scholar] [CrossRef]
- Lian, S.S.; Liu, Z.Y.; Fu, X.L.; Zhu, F.H.; Zhang, J.Q.; Cao, G.Q.; Ma, H.; Tang, S.W.; Zheng, L.; Xu, W.W.; et al. Nanoresonance Cavity and Localized Surface Plasmon Resonance Enhanced Broad-Spectral Photodetector for Versatile Applications. Nano Lett. 2025, 25, 6583–6591. [Google Scholar] [CrossRef]
- Updhay, V.V.; Nagabhooshanam, N.; Rathore, S.; Lal, M.; Sheela, A.C.S.; Beulah, D.; Rajaram, A. Graphene-Plasmon Hybrid Interlayers for Dynamically Tunable Hot Electron Generation in Visible-to-NIR Ranges. Plasmonics 2025. [Google Scholar] [CrossRef]
- Gu, H.; Weng, Z.X.; Chen, J. Near-infrared photodetector based on single-walled carbon nanotubes/Al2O3/In0.53Ga0.47As hetero-structure enhanced by silver nanoparticles. Infrared Phys. Technol. 2025, 151, 106153. [Google Scholar] [CrossRef]
- Li, F.; Wu, J.B.; Luo, C.; Ze, S.H.; Chen, T.X.; Zhang, Z.G.; Liu, F.; Li, J.; Liu, B.D. Liquid Metal Based Synthesis of GaN Nanosheets with Ag Nanoparticle Modification for Enhanced Ultraviolet Photodetection. ACS Appl. Nano Mater. 2025, 8, 12764–12774. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamadori, Y.; Murayama, T.; Shingo, S.; Yamada, S. Plasmon-Induced Charge Separation at Ag/p-NiO Nanocomposites for Solid-State Photodetectors. ACS Appl. Electron. Mater. 2025, 7, 5412–5417. [Google Scholar] [CrossRef]
- Wang, F.; Xu, R.; Ye, X.H.; Zhu, Y.T.; Wang, J.Y.; Cheng, K.F.; Xu, K.J.; Qian, Y.Y. LSPR-driven synergistic photoelectric enhancement for broadband and self-powered photodetection in Au/InSb nanohybrids. J. Alloys Compd. 2025, 1030, 180890. [Google Scholar] [CrossRef]
- Jing, W.K.; Ding, N.; Li, L.Y.; Jiang, F.; Xiong, X.; Liu, N.S.; Zhai, T.Y.; Gao, Y.H. Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity. Opt. Express 2017, 25, 14565–14574. [Google Scholar] [CrossRef]
- Young, S.J.; Chu, Y.J.; Liu, Y.H. Low-Dark Current UV Photodetector Based on Photochemical Reduction Ag-Nanoparticles Decoration ZnO Nanostructure. IEEE Sens. J. 2024, 24, 36664–36671. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, M.T.; Ashraf, I.M.; AlFaify, S.; El-Toni, A.M.; Aldalbahi, A.; Ghaithan, H.; Khan, A. Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 2019, 45, 21975–21985. [Google Scholar] [CrossRef]
- Yu, P.P.; Hu, K.; Chen, H.Y.; Zheng, L.X.; Fang, X.S. Novel p-p Heterojunctions Self-Powered Broadband Photodetectors with Ultrafast Speed and High Responsivity. Adv. Funct. Mater. 2017, 27, 10. [Google Scholar] [CrossRef]
- Lu, Z.T.; Gao, Z.Y.; Sun, L.; Yu, P.P. Sb2Se3 microwires/ZnO nanoparticles heterojunction for high performances self-powered photodetector. Nanotechnology 2025, 36, 335201. [Google Scholar] [CrossRef]
- He, X.W.; Xu, J.P.; Shi, S.B.; Kong, L.N.; Zhang, X.S.; Li, L. Enhancing the Performance of Broadband Sb2Se3/Ga2O3 Self-Powered Photodetectors via Modulation of Ga2O3 Surface States and Their Application in All-Day Corona Detection. ACS Appl. Mater. Interfaces 2025, 17, 36192–36202. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, Y.; Liang, L.M.; Hao, Q.Y.; Zhang, J.; Liu, H.; Liu, C.C. Enhanced Broadband Responsivity of Ni-Doped Sb2Se3 Nanorod Photodetector. J. Phys. Chem. C 2019, 123, 14781–14789. [Google Scholar] [CrossRef]
- Vashishtha, P.; Dash, A.; Walia, S.; Gupta, G. Self-bias Mo-Sb-Ga multilayer photodetector encompassing ultra-broad spectral response from UV-C to IR-B. Opt. Laser Technol. 2025, 181, 111705. [Google Scholar] [CrossRef]
- Wan, P.; Tang, K.; Wei, Y.; Xu, T.; Sha, S.L.; Shi, D.N.; Kan, C.X.; Jiang, M.M. Self-powered polarization-sensitive photodetection and imaging based on Sb2Se3 microbelt/Si van der Waals heterojunction with MXene transmittance window. Appl. Surf. Sci. 2024, 649, 159162. [Google Scholar] [CrossRef]
- Kim, S.K.; You, H.K.; Yun, K.R.; Kim, J.H.; Seong, T.Y. Fabrication of High-Responsivity Sb2Se3-Based Photodetectors through Selenization Process. Adv. Opt. Mater. 2023, 11, 2202625. [Google Scholar] [CrossRef]
- Yu, P.P.; Yu, X.T.; Kong, Y.Q.; Sun, L.; Jiang, Y.F. Sb2Se3 Microbelt/PEDOT Heterojunction for a Self-Powered Visible to Near-Infrared Photodetector with High Polarization-Sensitive Imaging. ACS Appl. Electron. Mater. 2025, 7, 1684–1693. [Google Scholar] [CrossRef]






| PD Device | Bias (V) | On/Off Ratio | Rise/Fall Time (ms) | Rλ (mA W −1) | D* (Jones) | Ref. |
|---|---|---|---|---|---|---|
| Sb2Se3-MW/Se-MT | 0 | 171 | 320/120 | 25 | 1.78 × 1010 | This work |
| Sb2Se3-MW/Se-MT/Ag-NW | 0 | 618 | 8/10 | 122 | 1.69 × 1011 | This work |
| Sb2Se3-MW/ZnO | 0 | 257 | 17/35 | 120 | 8.93 × 1011 | [40] |
| Sb2Se3/Ga2O3 | 0 | - | 12/13 | 180 | 4.6 × 109 | [41] |
| Ni-Doped Sb2Se3 | 3 | 91 | 170/320 | 18.9 | 2.6 × 1014 | [42] |
| MoS2/Sb2Se3/GaN | 0 | - | 10/10 | 665 | 4.19 × 1010 | [43] |
| Sb2Se3/Si | 0 | 2000 | 1.7/2.9 | 25 | 1 × 1010 | [44] |
| Sb2Se3/ZnO nanorod | 0 | 415 | - | 137.17 | 1.33 × 109 | [12] |
| Selenized Sb2Se3 | 3 | 100 | 4.54/8.5 | 1130 | 4.62 × 1011 | [45] |
| Sb2Se3/PEDOT | 0 | 1804 | 23/60 | 2330 | 5.8 × 1010 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, X.; Cui, J.; Jiang, Y.; Yu, P. Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors. Nanomaterials 2025, 15, 1849. https://doi.org/10.3390/nano15241849
Zhang S, Wang X, Cui J, Jiang Y, Yu P. Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors. Nanomaterials. 2025; 15(24):1849. https://doi.org/10.3390/nano15241849
Chicago/Turabian StyleZhang, Shubin, Xiaonan Wang, Juntong Cui, Yanfeng Jiang, and Pingping Yu. 2025. "Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors" Nanomaterials 15, no. 24: 1849. https://doi.org/10.3390/nano15241849
APA StyleZhang, S., Wang, X., Cui, J., Jiang, Y., & Yu, P. (2025). Ag Nanowires-Enhanced Sb2Se3 Microwires/Se Microtube Heterojunction for High Performance Self-Powered Broadband Photodetectors. Nanomaterials, 15(24), 1849. https://doi.org/10.3390/nano15241849

