High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact
Abstract
1. Introduction
2. Device Structure and Fabrication Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.H.; Udrea, F.; Wang, H. Multidimensional device architectures for efficient power electronics. Nat. Electron. 2022, 5, 723–734. [Google Scholar] [CrossRef]
- Zhou, F.; Gong, H.H.; Xiao, M.; Ma, Y.W.; Wang, Z.P.; Yu, X.X.; Li, L.; Fu, L.; Tan, H.H.; Yang, Y.; et al. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics. Nat. Commun. 2023, 14, 4459. [Google Scholar]
- Pearton, S.J.; Yang, J.C.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Sun, S.H.; Wang, C.L.; Alghamdi, S.; Zhou, H.; Hao, Y.; Zhang, J.C. Recent advanced ultra-wide bandgap β-Ga2O3 material and device technologies. Adv. Electron. Mater. 2024, 11, 2300844. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhang, J.C.; Xu, S.R.; Zhang, C.F.; Feng, Q.; Zhang, Y.C.; Ning, J.; Zhao, S.L.; Zhou, H.; Hao, Y. Progress in state-of-the-art technologies of Ga2O3 devices. J. Phys. D-Appl. Phys. 2021, 54, 243001. [Google Scholar] [CrossRef]
- He, Q.M.; Hao, W.B.; Zhou, X.Z.; Li, Y.; Zhou, K.; Chen, C.; Xiong, W.H.; Jian, G.Z.; Xu, G.W.; Zhao, X.L.; et al. Over 1 GW/cm2 vertical Ga2O3 Schottky barrier diodes without edge termination. IEEE Electron Device Lett. 2022, 43, 264–267. [Google Scholar] [CrossRef]
- Li, J.S.; Chiang, C.C.; Xia, X.; Yoo, T.J.; Ren, F.; Kim, H.; Pearton, S.J. Demonstration of 4.7 kV breakdown voltage in NiO/β-Ga2O3 vertical rectifiers. Appl. Phys. Lett. 2022, 121, 042105. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, X.D.; Jiang, H.X.; Ng, K.W.; Chen, Z.M.; Pei, Y.L.; Lau, K.M.; Wang, G. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett. 2020, 41, 449–452. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, M.; Porter, M.; Ma, Y.W.; Spencer, J.; Du, Z.H.; Jacobs, A.G.; Sasaki, K.; Wang, H.; Tadjer, M.; et al. 10-kV Ga2O3 charge-balance Schottky rectifier perational at 200 °C. IEEE Electron Device Lett. 2023, 44, 1268–1271. [Google Scholar] [CrossRef]
- Titov, A.I.; Karabeshkin, K.V.; Struchkov, A.I.; Nikolaev, V.I.; Azarov, A.; Gogova, D.S.; Karaseov, P.A. Comparative study of radiation tolerance of GaN and Ga2O3 polymorphs. Vacuum 2022, 200, 111005. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Kobayashi, T.; Ohba, E. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air. J. Cryst. Growth 2020, 546, 125778. [Google Scholar] [CrossRef]
- Reese, S.B.; Remo, T.; Green, J.; Zakutayev, A. How Much Will Gallium Oxide Power Electronics Cost? Joule 2019, 3, 903–907. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst. Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Víllora, E.G.; Shimamura, K.; Yoshikawa, Y.; Aoki, K.; Ichinose, N. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 2004, 270, 420–426. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Yakovlev, N.; Butenko, P.; Tsymbalov, A.; Boiko, M.; Kopyev, V.; Krymov, V.; Kushnarev, B.; Shapenkov, S.; et al. Electroconductive and photoelectric properties of Pt/(100) β-Ga2O3 Schottky barrier diode based on Czochralski grown crystal. J. Vac. Sci. Technol. A 2024, 42, 042802. [Google Scholar] [CrossRef]
- Li, W.S.; Saraswat, D.; Long, Y.Y.; Nomoto, K.; Jena, D.; Xing, H.G. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. Appl. Phys. Lett. 2020, 116, 192101. [Google Scholar] [CrossRef]
- Yakovlev, N.N.; Almaev, A.V.; Kushnarev, B.O.; Verkholetov, M.G.; Poliakov, M.V.; Zinovev, M.M. β-Ga2O3 Schottky Barrier Diode with Ion Beam Sputter-Deposited Semi-Insulating Layer. Crystals 2024, 14, 123. [Google Scholar] [CrossRef]
- Takatsuka, A.; Miyamoto, H.; Sasaki, K.; Kuramata, A. Fabrication of ampere-class p-Cu2O/n-β-Ga2O3 trench heterojunction barrier Schottky diodes and double-pulse evaluation. In Proceedings of the 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, China, 28 May–1 June 2023; pp. 342–345. [Google Scholar] [CrossRef]
- Wei, J.; Wei, Y.X.; Lu, J.; Peng, X.S.; Jiang, Z.L.; Yang, K.M.; Luo, X.R. Experimental Study on Electrical Characteristics of Large-Size Vertical β-Ga2O3 Junction Barrier Schottky Diodes. In Proceedings of the 34th IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; pp. 97–100. [Google Scholar] [CrossRef]
- Gong, H.H.; Yu, X.X.; Xu, Y.; Chen, X.H.; Kuang, Y.; Lv, Y.J.; Yang, Y.; Ren, F.F.; Feng, Z.H.; Gu, S.L.; et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl. Phys. Lett. 2021, 118, 202102. [Google Scholar] [CrossRef]
- He, Q.M.; Hao, W.B.; Li, Q.Y.; Han, Z.; He, S.; Liu, Q.; Zhou, X.Z.; Xu, G.W.; Long, S.B. β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings. Chin. Phys. B 2023, 32, 128507. [Google Scholar] [CrossRef]
- Lv, Y.J.; Wang, Y.G.; Fu, X.C.; Dun, S.B.; Sun, Z.F.; Liu, H.Y.; Zhou, X.Y.; Song, X.B.; Dang, K.; Liang, S.X.; et al. Demonstration of β-Ga2O3 Junction Barrier Schottky Diodes with a Baligas Figure of Merit of 0.85 GW/cm2 or a 5A/700 V Handling Capabilities. IEEE Trans. Power Electron. 2021, 36, 6179–6182. [Google Scholar] [CrossRef]
- Wu, F.H.; Wang, Y.A.; Jian, G.Z.; Xu, G.W.; Zhou, X.Z.; Guo, W.; Du, J.H.; Liu, Q.; Dun, S.; Yu, Z.A.; et al. Superior Performance β-Ga2O3 Junction Barrier Schottky Diodes Implementing p-NiO Heterojunction and Beveled Field Plate for Hybrid Cockcroft-Walton Voltage Multiplier. IEEE Trans. Electron Devices 2023, 70, 1199–1205. [Google Scholar] [CrossRef]
- Wang, J.J.; Ji, X.Q.; Zheng, H.C.; Ye, L.C.; Liu, Z.; Shu, L.; Li, S.; Tang, W.H.; Li, P.G. Investigation of electrical transport mechanisms in p-NiO/n-Ga2O3 junction barrier Schottky diodes with low leakage and high breakdown voltage. Phys. Scr. 2025, 100, 105904. [Google Scholar] [CrossRef]
- Su, C.X.; Zhou, H.; Zhang, K.; Wang, C.L.; Sun, S.H.; Gong, H.H.; Ye, J.D.; Liu, Z.H.; Dang, K.; Hu, Z.Y.; et al. Low turn-on voltage and 2.3 kV β-Ga2O3 heterojunction barrier Schottky diodes with Mo anode. Appl. Phys. Lett. 2024, 124, 173506. [Google Scholar] [CrossRef]
- Gong, H.H.; Sun, N.; Hu, T.C.; Porter, M.; Yu, X.X.; Ren, F.F.; Gu, S.L.; Zheng, Y.D.; Zhang, R.; Zhang, Y.H.; et al. Kilovolt, low-barrier Ga2O3 JBS diode with ultra-low forward voltage. In Proceedings of the 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2–6 June 2024; pp. 104–107. [Google Scholar] [CrossRef]
- Li, M.J.; He, M.H.; Wang, X.H.; Jiang, Y.; Wen, K.Y.; Du, F.Z.; Deng, C.K.; He, J.Q.; Zhang, Y.; Yu, W.Y.; et al. High-performance β-Ga2O3 Schottky barrier diodes with Mg current blocking layer using spin-on-glass technique. Appl. Phys. Lett. 2024, 125, 132101. [Google Scholar] [CrossRef]
- Tung, R.T. Recent advances in Schottky barrier concepts. In Materials Science & Engineering R-Reports; Elsevier: Amsterdam, The Netherlands, 2001; Volume 35, pp. 1–138. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, M.J.; He, M.H.; Lu, H.H.; Chen, C.Z.; Jiang, Y.; Wen, K.Y.; Du, F.Z.; Zhang, Y.; Deng, C.K.; et al. Optimization of CuOx/Ga2O3 Heterojunction Diodes for High-Voltage Power Electronics. Nanomaterials 2025, 15, 87. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, M.J.; Jiang, Y.; Wen, K.Y.; Tang, C.Y.; Du, F.Z.; Chen, C.Z.; Deng, C.K.; Zhang, Y.; Lu, H.H.; et al. 2.86-kV vertical Cu2O/Ga2O3 heterojunction diodes with stepped double-layer structure. J. Alloys Compd. 2025, 1036, 181672. [Google Scholar] [CrossRef]
- Wang, Y.G.; Gong, H.H.; Lv, Y.J.; Fu, X.C.; Dun, S.B.; Han, T.T.; Liu, H.Y.; Zhou, X.Y.; Liang, S.X.; Ye, J.D.; et al. 2.41 kV vertical P-Nio/n-Ga2O3 heterojunction diodes with a record Baliga’s Figure-of-Merit of 5.18 GWcm2. IEEE Trans. Power Electron. 2022, 37, 3743–3746. [Google Scholar] [CrossRef]
- Watahiki, T.; Yuda, Y.; Furukawa, A.; Yamamuka, M.; Takiguchi, Y.; Miyajima, S. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl. Phys. Lett. 2017, 111, 222104. [Google Scholar] [CrossRef]
- Wang, C.L.; Yan, Q.L.; Zhang, C.Q.; Su, C.X.; Zhang, K.; Sun, S.H.; Liu, Z.H.; Zhang, W.H.; Alghamdi, S.; Ghandourah, E.; et al. β-Ga2O3 lateral Schottky barrier diodes with >10 kV breakdown voltage and anode engineering. IEEE Electron Device Lett. 2023, 44, 1684–1687. [Google Scholar] [CrossRef]
- Kong, L.X.; Ren, N.; Wang, R.; Li, Y.J.; Wang, C.; Wang, H.Y.; Sheng, K. Fabrication and Characterization of Kilovolt p-Type SiC JBS Diodes with Enhanced Current Capability and Electroluminescence Phenomenon. IEEE Electron Device Lett. 2024, 45, 1566–1569. [Google Scholar] [CrossRef]
- Zhou, H.; Zeng, S.F.; Zhang, J.C.; Liu, Z.H.; Feng, Q.; Xu, S.R.; Zhang, J.F.; Hao, Y. Comprehensive Study and Optimization of Implementing p-NiO in β-Ga2O3 Based Diodes via TCAD Simulation. Crystals 2021, 11, 1186. [Google Scholar] [CrossRef]
- Gong, H.H.; Sun, N.; Hu, T.C.; Yu, X.X.; Porter, M.; Yang, Z.E.; Ren, F.F.; Gu, S.L.; Zheng, Y.D.; Zhang, R.; et al. Ga2O3/NiO junction barrier Schottky diodes with ultra-low barrier TiN contact. Appl. Phys. Lett. 2024, 124, 233507. [Google Scholar] [CrossRef]
- Wilhelmi, F.; Kunori, S.; Sasaki, K.; Kuramata, A.; Komatsu, Y.; Lindemann, A. Packaged β-Ga2O3 Trench MOS Schottky Diode with Nearly Ideal Junction Properties. IEEE Trans. Power Electron. 2022, 37, 3737–3742. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor-Devices, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 1992, 45, 13509–13523. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Wei, J.; Lv, Y.J.; Wei, Y.X.; Wang, Y.G.; Lu, J.; Liu, H.Y.; Feng, Z.H.; Zhou, H.; Zhang, J.C.; et al. Nonuniform mechanism for positive and negative bias stress instability in β-Ga2O3 MOSFET. IEEE Trans. Electron Devices 2022, 69, 5509–5515. [Google Scholar] [CrossRef]
- Wang, H.; Lai, C.H.; Huang, P.Y.; Lin, Y.A.; Hsu, S.S.H.; Wong, R.K.Y. Comprehensive Study on Trapping-induced Dynamics in β-Ga2O3 Schottky Barrier Diodes under Continuous Switching Stress. In Proceedings of the 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bremen, Germany, 2–6 June 2024; pp. 224–227. [Google Scholar] [CrossRef]
- Zhang, T.; Lv, Y.G.; Li, R.H.; Zhang, Y.N.; Zhang, Y.C.; Li, X.D.; Zhang, J.C.; Hao, Y. Current-collapse suppression of high-performance lateral AlGaN/GaN Schottky barrier diodes by a thick GaN cap layer. IEEE Electron Device Lett. 2021, 42, 477–480. [Google Scholar] [CrossRef]
- Callahan, W.A.; Egbo, K.; Lee, C.W.; Ginley, D.; O’Hayre, R.; Zakutayev, A. Reliable operation of Cr2O3:Mg/β-Ga2O3 p-n heterojunction diodes at 600 °C. Appl. Phys. Lett. 2024, 124, 153504. [Google Scholar] [CrossRef]
- Gong, H.H.; Yang, X.; Porter, M.; Yang, Z.N.; Wang, B.X.; Li, L.; Fu, L.; Sasaki, K.; Wang, H.; Gu, S.L.; et al. Reliability of NiO/β-Ga2O3 bipolar heterojunction. Appl. Phys. Lett. 2025, 126, 012102. [Google Scholar] [CrossRef]







| Samples | Ron,sp (mΩ·cm2) | BV (V) | PFOM (GW/cm2) |
|---|---|---|---|
| SBD | 5.86 | 540 | 0.05 |
| JBS (2 μm) | 6.27 | 1160 | 0.21 |
| JBS (3 μm) | 6.12 | 1540 | 0.39 |
| JBS (4 μm) | 5.91 | 1700 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, X.; Li, M.; Yu, H.; Ang, K.W.; Chen, C.Z.; Geng, Y.; Wang, Q.; Yu, H. High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact. Nanomaterials 2025, 15, 1840. https://doi.org/10.3390/nano15241840
Wang X, Liu X, Li M, Yu H, Ang KW, Chen CZ, Geng Y, Wang Q, Yu H. High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact. Nanomaterials. 2025; 15(24):1840. https://doi.org/10.3390/nano15241840
Chicago/Turabian StyleWang, Xiaohui, Xuhui Liu, Mujun Li, Haozhe Yu, Kah Wee Ang, Chun Zhang Chen, Yue Geng, Qing Wang, and Hongyu Yu. 2025. "High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact" Nanomaterials 15, no. 24: 1840. https://doi.org/10.3390/nano15241840
APA StyleWang, X., Liu, X., Li, M., Yu, H., Ang, K. W., Chen, C. Z., Geng, Y., Wang, Q., & Yu, H. (2025). High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact. Nanomaterials, 15(24), 1840. https://doi.org/10.3390/nano15241840

