Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications
Abstract
1. Introduction
2. Mechanisms of Optical Spin Angular Momentum Manipulation
2.1. Momentum Density and Angular Momentum Density of Light
2.2. Spin Angular Momentum of Light
2.2.1. Longitudinal Spin in Paraxial Optical Fields
2.2.2. Transverse Spin in Evanescent Fields


2.3. Spin-Momentum Locking Relationship
2.4. Topological Properties of Optical Transverse Spin
3. Detection Methods for Spin Angular Momentum
3.1. Spin Angular Momentum Detection Based on Near-Field Scanning Optical Microscopy

3.2. Near-Field Coupling Resonance Effect of Nanoparticle-on-Film Structures
3.3. Spin Angular Momentum Detection Based on Nonlinear Effects
3.4. Spin Angular Momentum Detection Using Photoemission Electron Microscopy
4. Application Research of Spin Angular Momentum
4.1. Weak Effect Measurement
4.2. Optical Differentiation
4.3. Optical Lateral Forces
4.4. Precision Sensing
4.5. Magnetic Domain Detection
5. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Bloch, F.; Hansen, W.W.; Packard, M. The Nuclear Induction Experiment. Phys. Rev. 1946, 70, 474–485. [Google Scholar] [CrossRef]
- Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69, 37–38. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Vandau, F.N.; Petroff, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)FE/(001) Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef]
- Zavoisky, E. Paramagnetic relaxation of liquid solution for perpendicular fields. J. Phys. USSR 1945, 9, 211p. [Google Scholar]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358. [Google Scholar] [CrossRef] [PubMed]
- Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517–1530. [Google Scholar] [CrossRef]
- Žutić, I.; Fabian, J.; Sarma, S.D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323. [Google Scholar] [CrossRef]
- Beth, R.A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 1936, 50, 115–125. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Aiello, A.; Banzer, P.; Neugebaueru, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789–795. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep.-Rev. Sec. Phys. Lett. 2015, 592, 1–38. [Google Scholar] [CrossRef]
- Shi, P.; Yang, A.P.; Meng, F.F.; Chen, J.S.; Zhang, Y.Q.; Xie, Z.W.; Du, L.P.; Yuan, X.C. Optical near-field measurement for spin-orbit interaction of light. Prog. Quantum Electron. 2021, 78, 100341. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Yuan, X.C. Spin photonics: From transverse spin to photonic skyrmions. Nanophotonics 2021, 10, 3927–3943. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Li, C.C.; Zayats, A.; Yuan, X.C. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. USA 2021, 118, e2018816118. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Lei, X.R.; Zhang, Q.; Li, H.; Du, L.P.; Yuan, X.C. Intrinsic Spin-Momentum Dynamics of Surface Electromagnetic Waves in Dispersive Interfaces. Phys. Rev. Lett. 2022, 128, 213904. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Yang, A.P.; Yin, X.J.; Lei, X.R.; Yuan, X.C. Dynamical and topological properties of the spin angular momenta in general electromagnetic fields. Commun. Phys. 2023, 6, 283. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Xu, X.H.; Nieto-Vesperinas, M.; Song, Q.H.; Liu, A.Q.; Cipparrone, G.; Su, Z.P.; Yao, B.L.; Wang, Z.S.; Qiu, C.W.; et al. Advances in light transverse momenta and optical lateral forces. Adv. Opt. Photonics 2023, 15, 835–906. [Google Scholar] [CrossRef]
- Wang, S.B.; Chan, C.T. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014, 5, 3307. [Google Scholar] [CrossRef]
- Hayat, A.; Mueller, J.P.B.; Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. USA 2015, 112, 13190–13194. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Zhu, T.T.; Liu, J.Q.; Tsai, D.P.; Zhang, H.; Wang, S.B.; Chan, C.T.; Wu, P.C.; Zayats, A.V.; Nori, F.; et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum. Sci. Adv. 2022, 8, eabn2291. [Google Scholar] [CrossRef]
- Yu, X.N.; Li, Y.X.; Xu, B.J.; Wang, X.G.; Zhang, L.; Chen, J.; Lin, Z.F.; Chan, C.T. Anomalous Lateral Optical Force as a Manifestation of the Optical Transverse Spin. Laser Photon. Rev. 2023, 17, 2300212. [Google Scholar] [CrossRef]
- Lu, C.F.; Wang, B.; Fang, X.; Tsai, D.P.; Zhu, W.M.; Song, Q.H.; Deng, X.; He, T.; Gong, X.Y.; Luo, H.; et al. Nanoparticle Deep-Subwavelength Dynamics Empowered by Optical Meron-Antimeron Topology. Nano Lett. 2023, 24, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Du, L.P.; Yuan, X.C. Strong spin-orbit interaction of photonic skyrmions at the general optical interface. Nanophotonics 2020, 9, 4619–4628. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, Z.W.; Du, L.P.; Shi, P.; Yuan, X.C. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res. 2021, 3, 023109. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, Z.W.; Shi, P.; Yang, H.; He, H.R.; Du, L.P.; Yuan, X.C. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Res. 2022, 10, 947–957. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Yuan, X.C. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation. Opt. Express 2018, 26, 23449–23459. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Yuan, X.C. Optical manipulation with electric and magnetic transverse spin through multilayered focused configuration. Appl. Phys. Express 2019, 12, 032001. [Google Scholar] [CrossRef]
- Yang, A.P.; Lei, X.R.; Shi, P.; Meng, F.F.; Lin, M.; Du, L.P.; Yuan, X.C. Spin-Manipulated Photonic Skyrmion-Pair for Pico-Metric Displacement Sensing. Adv. Sci. 2023, 10, 2205249. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.R.; Du, L.P.; Yuan, X.C.; Zayats, A. Optical spin-orbit coupling in the presence of magnetization: Photonic skyrmion interaction with magnetic domains. Nanophotonics 2021, 10, 3667–3675. [Google Scholar] [CrossRef]
- Araneda, G.; Walser, S.; Colombe, Y.; Higginbottom, D.B.; Volz, J.; Blatt, R.; Rauschenbeutel, A. Wavelength-scale errors in optical localization due to spin-orbit coupling of light. Nat. Phys. 2019, 15, 17–21. [Google Scholar] [CrossRef]
- Sheng, L.J.; Chen, Y.; Yuan, S.J.; Liu, X.Q.; Zhang, Z.Y.; Jing, H.; Kuang, L.M.; Zhou, X.X. Photonic spin Hall effect: Physics, manipulations, and applications. Prog. Quantum Electron. 2023, 91, 100484. [Google Scholar] [CrossRef]
- Zhou, X.X.; Ling, X.H.; Luo, H.L.; Wen, S.C. Identifying graphene layers via spin Hall effect of light. Appl. Phys. Lett. 2012, 101, 251602. [Google Scholar] [CrossRef]
- Neugebauer, M.; Wozniak, P.; Bag, A.; Leuchs, G.; Banzer, P. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun. 2016, 7, 11286. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Z.; Ling, X.H.; Shu, W.X.; Luo, H.L.; Wen, S.C. Precision Measurement of the Optical Conductivity of Atomically Thin Crystals via the Photonic Spin Hall Effect. Phys. Rev. Appl. 2020, 13, 014057. [Google Scholar] [CrossRef]
- Zhu, T.F.; Lou, Y.J.; Zhou, Y.H.; Zhang, J.H.; Huang, J.Y.; Li, Y.; Luo, H.L.; Wen, S.C.; Zhu, S.Y.; Gong, Q.H.; et al. Generalized Spatial Differentiation from the Spin Hall Effect of Light and Its Application in Image Processing of Edge Detection. Phys. Rev. Appl. 2019, 11, 034043. [Google Scholar] [CrossRef]
- Zhou, J.X.; Liu, S.K.; Qian, H.L.; Li, Y.H.; Luo, H.L.; Wen, S.C.; Zhou, Z.Y.; Guo, G.C.; Shi, B.S.; Liu, Z.W. Metasurface enabled quantum edge detection. Sci. Adv. 2020, 6, eabc4385. [Google Scholar] [CrossRef]
- Zhou, J.X.; Qian, H.L.; Chen, C.F.; Zhao, J.X.; Li, G.R.; Wu, Q.Y.; Luo, H.L.; Wen, S.C.; Liu, Z.W. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. USA 2019, 116, 11137–11140. [Google Scholar] [CrossRef]
- He, S.S.; Zhou, J.X.; Chen, S.Z.; Shu, W.X.; Luo, H.L.; Wen, S.C. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Opt. Lett. 2020, 45, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.S.; He, S.S.; Luo, H.L. Photonic Spin-Hall Differential Microscopy. Phys. Rev. Appl. 2022, 18, 044016. [Google Scholar] [CrossRef]
- Xu, D.Y.; He, S.S.; Zhou, J.X.; Chen, S.Z.; Wen, S.C.; Luo, H.L. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect. Opt. Lett. 2020, 45, 6867–6870. [Google Scholar] [CrossRef]
- He, S.S.; Zhou, J.X.; Chen, S.Z.; Shu, W.X.; Luo, H.L.; Wen, S.C. Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light. APL Phontonics 2020, 5, 036105. [Google Scholar] [CrossRef]
- Xu, D.Y.; He, S.S.; Zhou, J.X.; Chen, S.Z.; Wen, S.C.; Luo, H.L. Goos-Hanchen effect enabled optical differential operation and image edge detection. Appl. Phys. Lett. 2020, 116, 211103. [Google Scholar] [CrossRef]
- Zhou, J.X.; Qian, H.L.; Zhao, J.X.; Tang, M.; Wu, Q.Y.; Lei, M.; Luo, H.L.; Wen, S.C.; Chen, S.C.; Liu, Z.W. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev. 2021, 8, nwaa176. [Google Scholar] [CrossRef]
- Wang, R.S.; He, S.S.; Chen, S.Z.; Shu, W.X.; Wen, S.C.; Luo, H.L. Computing metasurfaces enabled chiral edge image sensing. iScience 2022, 25, 104532. [Google Scholar] [CrossRef]
- Xiao, T.T.; Yang, H.; Yang, Q.; Xu, D.Y.; Wang, R.; Chen, S.Z.; Luo, H.L. Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett. 2022, 47, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Yang, Q.; Chen, S.Z.; Xiao, Z.C.; Wen, S.C.; Luo, H.L. Intrinsic Optical Spatial Differentiation Enabled Quantum Dark-Field Microscopy. Phys. Rev. Lett. 2022, 128, 193601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Q.; He, S.S.; Wang, R.S.; Luo, H.L. Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics 2022, 10, 2201–2207. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480. [Google Scholar] [CrossRef]
- Rodríguez-Fortuño, F.J.; Marino, G.; Ginzburg, P.; O’Connor, D.; Martínez, A.; Wurtz, G.A.; Zayats, A.V. Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science 2013, 340, 328–330. [Google Scholar] [CrossRef]
- Petersen, J.; Volz, J.; Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 2014, 346, 67–71. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Ginzburg, P.; Rodríguez-Fortuño, F.J.; Wurtz, G.A.; Zayats, A.V. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 2014, 5, 5327. [Google Scholar] [CrossRef]
- Söllner, I.; Mahmoodian, S.; Hansen, S.L.; Midolo, L.; Javadi, A.; Kirsanske, G.; Pregnolato, T.; El-Ella, H.; Lee, E.H.; Song, J.D.; et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 2015, 10, 775–778. [Google Scholar] [CrossRef]
- le Feber, B.; Rotenberg, N.; Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 2015, 6, 6695. [Google Scholar] [CrossRef]
- Lefier, Y.; Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 2015, 40, 2890–2893. [Google Scholar] [CrossRef]
- Peng, L.; Duan, L.F.; Wang, K.W.; Gao, F.; Zhang, L.; Wang, G.F.; Yang, Y.H.; Chen, H.S.; Zhang, S. Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photonics 2019, 13, 878–882. [Google Scholar] [CrossRef]
- Guo, Z.W.; Long, Y.; Jiang, H.T.; Ren, J.; Chen, H. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics 2021, 3, 036001. [Google Scholar] [CrossRef]
- Forbes, A.; de Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253–262. [Google Scholar] [CrossRef]
- He, C.; Shen, Y.J.; Forbes, A. Towards higher-dimensional structured light. Light-Sci. Appl. 2022, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wan, C.H.; Zhan, Q.W. Engineering photonic angular momentum with structured light: A review. Adv. Photonics 2021, 3, 064001. [Google Scholar] [CrossRef]
- Angelsky, O.V.; Bekshaev, A.Y.; Hanson, S.G.; Zenkova, C.Y.; Mokhun, I.I.; Jun, Z. Structured Light: Ideas and Concepts. Front. Phys. 2020, 8, 114. [Google Scholar] [CrossRef]
- Shen, Y.J.; Wang, X.J.; Xie, Z.W.; Min, C.J.; Fu, X.; Liu, Q.; Gong, M.L.; Yuan, X.C. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-Order Poincare Sphere, Stokes Parameters, and the Angular Momentum of Light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef]
- Milione, G.; Evans, S.; Nolan, D.A.; Alfano, R.R. Higher Order Pancharatnam-Berry Phase and the Angular Momentum of Light. Phys. Rev. Lett. 2012, 108, 190401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Ling, X.H.; Yi, X.N.; Zhou, X.X.; Luo, H.L.; Wen, S.C. Realization of polarization evolution on higher-order Poincare sphere with metasurface. Appl. Phys. Lett. 2014, 104, 191110. [Google Scholar] [CrossRef]
- Chen, S.Z.; Zhou, X.X.; Liu, Y.C.; Ling, X.H.; Luo, H.L.; Wen, S.C. Generation of arbitrary cylindrical vector beams on the higher order Poincare sphere. Opt. Lett. 2014, 39, 5274–5276. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.C.; Kong, L.J.; Li, S.M.; Qian, S.X.; Li, Y.N.; Tu, C.H.; Wang, H.T. Generalized Poincare sphere. Opt. Express 2015, 23, 26586–26595. [Google Scholar] [CrossRef]
- Yang, H.; He, P.; Ou, K.; Hu, Y.Q.; Jiang, Y.T.; Ou, X.N.; Jia, H.H.; Xie, Z.W.; Yuan, X.C.; Duan, H.G. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl. 2023, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Wang, X.H.; Ni, J.C.; Cao, Y.; Li, J.W.; Wang, C.W.; Hu, Y.L.; Chu, J.R.; Wu, D. Optical Encryption in the Photonic Orbital Angular Momentum Dimension via Direct-Laser-Writing 3D Chiral Metahelices. Nano Lett. 2023, 23, 2304–2311. [Google Scholar] [CrossRef]
- Fang, X.Y.; Ren, H.R.; Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 2020, 14, 102–108. [Google Scholar] [CrossRef]
- Ren, H.R.; Fang, X.Y.; Jang, J.; Burger, J.; Rho, J.; Maier, S.A. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 2020, 15, 948–955. [Google Scholar] [CrossRef]
- Qu, G.Y.; Yang, W.H.; Song, Q.H.; Liu, Y.L.; Qiu, C.W.; Han, J.C.; Tsai, D.P.; Xiao, S.M. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 2020, 11, 5484. [Google Scholar] [CrossRef]
- Alfalou, A.; Brosseau, C. Optical image compression and encryption methods. Adv. Opt. Photonics 2009, 1, 589–636. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, Y.; Xian, M.C.; Feng, Z.W.; Zhu, L.W.; Cao, Y.Y.; Lan, S.; Guan, B.O.; Qiu, C.W.; Gu, M.; et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics 2021, 15, 901–907. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, M.; Li, Y.R.; Jia, P.; Liu, G.N.; Xu, X.G.; Li, Z.H.; Min, C.J.; Lin, J.; Yu, C.Y.; et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light-Sci. Appl. 2015, 4, e257. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Q.M.; Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Smirnova, D.; Nori, F. Quantum spin Hall effect of light. Science 2015, 348, 1448–1451. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, Y.X.; Xu, B.J.; Wang, X.G.; Chen, J.; Lin, Z.F.; Yu, X.N. Pure transverse spin perpendicular to wave propagation in multiple plane waves. Phys. Rev. B 2023, 108, L241112. [Google Scholar] [CrossRef]
- Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [Google Scholar] [CrossRef]
- Shi, P.; Lin, M.; Gou, X.; Du, L.; Yang, A.; Yuan, X. The hidden spin-momentum locking and topological defects in unpolarized light fields. arXiv 2023, arXiv:2309.13997. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Q.; Shi, P.; Du, L.; Zayats, A.V.; Yuan, X. Topological quasiparticles of light: Optical skyrmions and beyond. arXiv 2022. [Google Scholar] [CrossRef]
- Tsesses, S.; Cohen, K.; Ostrovsky, E.; Gjonaj, B.; Bartal, G. Spin-Orbit Interaction of Light in Plasmonic Lattices. Nano Lett. 2019, 19, 4010–4016. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, P.; Du, L.; Yuan, X. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field. Nanoscale 2020, 12, 13674–13679. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Li, M.J.; Yuan, X.C. Symmetry-Protected Photonic Chiral Spin Textures by Spin-Orbit Coupling. Laser Photon. Rev. 2021, 15, 2000554. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, Z.; Ghosh, A.; Kapoor, K.; Dąbrowski, M.; Kubo, A.; Huang, C.-B.; Petek, H. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev. 2022, 9, 011420. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Q.; Yuan, X. Topological state transitions in electromagnetic topological defects. arXiv 2023, arXiv:2306.12024. [Google Scholar] [CrossRef]
- Dai, Y.A.; Zhou, Z.K.; Ghosh, A.; Mong, R.S.K.; Kubo, A.; Huang, C.B.; Petek, H. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 2020, 588, 616–619. [Google Scholar] [CrossRef]
- Lei, X.; Yang, A.; Shi, P.; Xie, Z.; Du, L.; Zayats, A.V.; Yuan, X. Photonic spin lattices: Symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett. 2021, 127, 237403. [Google Scholar] [CrossRef]
- Ghosh, A.; Yang, S.; Dai, Y.; Zhou, Z.; Wang, T.; Huang, C.-B.; Petek, H. A topological lattice of plasmonic merons. Appl. Phys. Rev. 2021, 8, 041413. [Google Scholar] [CrossRef]
- Meng, F.; Yang, A.; Du, K.; Jia, F.; Lei, X.; Mei, T.; Du, L.; Yuan, X. Measuring the magnetic topological spin structure of light using an anapole probe. Light Sci. Appl. 2022, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Antognozzi, M.; Bermingham, C.; Harniman, R.; Simpson, S.; Senior, J.; Hayward, R.; Hoerber, H.; Dennis, M.; Bekshaev, A.; Bliokh, K. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 2016, 12, 731–735. [Google Scholar] [CrossRef]
- Bauer, T.; Orlov, S.; Peschel, U.; Banzer, P.; Leuchs, G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat. Photonics 2014, 8, 23–27. [Google Scholar] [CrossRef]
- Neugebauer, M.; Bauer, T.; Aiello, A.; Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett. 2015, 114, 063901. [Google Scholar] [CrossRef]
- Neugebauer, M.; Eismann, J.S.; Bauer, T.; Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 2018, 8, 021042. [Google Scholar] [CrossRef]
- Eismann, J.S.; Banzer, P.; Neugebauer, M. Spin-orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res. 2019, 1, 033143. [Google Scholar] [CrossRef]
- Neugebauer, M.; Nechayev, S.; Vorndran, M.; Leuchs, G.; Banzer, P. Weak measurement enhanced spin hall effect of light for particle displacement sensing. Nano Lett. 2018, 19, 422–425. [Google Scholar] [CrossRef]
- Eismann, J.; Nicholls, L.; Roth, D.; Alonso, M.A.; Banzer, P.; Rodríguez-Fortuño, F.; Zayats, A.; Nori, F.; Bliokh, K. Transverse spinning of unpolarized light. Nat. Photonics 2021, 15, 156–161. [Google Scholar] [CrossRef]
- Frischwasser, K.; Cohen, K.; Kher-Alden, J.; Dolev, S.; Tsesses, S.; Bartal, G. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics 2021, 15, 442–448. [Google Scholar] [CrossRef]
- Lee, K.G.; Kihm, H.; Kihm, J.; Choi, W.; Kim, H.; Ropers, C.; Park, D.; Yoon, Y.-C.; Choi, S.; Woo, D. Vector field microscopic imaging of light. Nat. Photonics 2007, 1, 53–56. [Google Scholar] [CrossRef]
- Gersen, H.; Novotny, L.; Kuipers, L.; Van Hulst, N. On the concept of imaging nanoscale vector fields. Nat. Photonics 2007, 1, 242. [Google Scholar] [CrossRef]
- Yang, A.; Meng, F.; Shi, P.; Du, L.; Yuan, X. Mapping the weak plasmonic transverse field by a dielectric-nanoparticle-on-film structure with ultra-high precision. Opt. Express 2019, 27, 18980–18987. [Google Scholar] [CrossRef]
- Yin, X.J.; Shi, P.; Du, L.P.; Yuan, X.C. Spin-resolved near-field scanning optical microscopy for mapping of the spin angular momentum distribution of focused beams. Appl. Phys. Lett. 2020, 116, 241107. [Google Scholar] [CrossRef]
- Yang, A.; Chen, J.; Chen, X.; Meng, F.; Du, L.; Yuan, X. Three Orthogonal Polarization Distribution Mapping of the Tightly Focused Fields with a Dual-Mode Waveguide Probe. Laser Photon. Rev. 2023, 17, 2300032. [Google Scholar] [CrossRef]
- Loudon, R.; Baxter, C. Contributions of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 1825–1838. [Google Scholar] [CrossRef]
- Pfeifer, R.N.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Colloquium: Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 2007, 79, 1197–1216. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Optical momentum and angular momentum in complex media: From the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 2017, 19, 123014. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Alonso, M.A.; Ostrovskaya, E.A.; Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A—At. Mol. Opt. Phys. 2010, 82, 063825. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Dressel, J.; Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 2014, 16, 093037. [Google Scholar] [CrossRef]
- Bekshaev, A.; Bliokh, K.Y.; Soskin, M. Internal flows and energy circulation in light beams. J. Opt. 2011, 13, 053001. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Dual electromagnetism: Helicity, spin, momentum and angular momentum. New J. Phys. 2013, 15, 033026. [Google Scholar] [CrossRef]
- Lissberger, P. Ellipsometry and polarised light. Nature 1977, 269, 270. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014, 5, 3300. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Shukla, P. Geometry of 3D monochromatic light: Local wavevectors, phases, curl forces, and superoscillations. J. Opt. 2019, 21, 064002. [Google Scholar] [CrossRef]
- Berry, M.V. Optical currents. J. Opt. A Pure Appl. Opt. 2009, 11, 094001. [Google Scholar] [CrossRef]
- Barnett, S.M. Optical dirac equation. New J. Phys. 2014, 16, 093008. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. The role of the Riemann–Silberstein vector in classical and quantum theories of electromagnetism. J. Phys. A Math. Theor. 2013, 46, 053001. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. photon wave function. Prog. Opt. 1996, 36, 245–294. [Google Scholar]
- Białynicki-Birula, I. On the wave function of the photon. Acta Phys. Pol. A 1994, 86, 97–116. [Google Scholar] [CrossRef]
- Alpeggiani, F.; Bliokh, K.; Nori, F.; Kuipers, L. Electromagnetic helicity in complex media. Phys. Rev. Lett. 2018, 120, 243605. [Google Scholar] [CrossRef]
- Pan, D.; Wei, H.; Gao, L.; Xu, H. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits. Phys. Rev. Lett. 2016, 117, 166803. [Google Scholar] [CrossRef]
- Belinfante, F.J. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 1940, 7, 449–474. [Google Scholar] [CrossRef]
- Stewart, A.M. Angular momentum of the electromagnetic field: The plane wave paradox resolved. Eur. J. Phys. 2005, 26, 635–641. [Google Scholar] [CrossRef]
- Pfeifer, R.N.C.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. J. Opt. 2011, 13, 044017. [Google Scholar] [CrossRef]
- Stewart, A.M. Comparison of Different Forms for the “Spin” and “Orbital” Components of the Angular Momentum of Light. Int. J. Opt. 2011, 2011, 728350. [Google Scholar] [CrossRef]
- Onoda, M.; Murakami, S.; Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 2004, 93, 083901. [Google Scholar] [CrossRef] [PubMed]
- Bliokh, K.Y.; Bliokh, Y.P. Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect <? format? > in Reflection and Refraction of an Electromagnetic Wave Packet. Phys. Rev. Lett. 2006, 96, 073903. [Google Scholar]
- Kavokin, A.; Malpuech, G.; Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 2005, 95, 136601. [Google Scholar] [CrossRef] [PubMed]
- Hosten, O.; Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Coriolis effect in optics: Unified geometric phase and spin-Hall effect. Phys. Rev. Lett. 2008, 101, 030404. [Google Scholar] [CrossRef]
- Gorodetski, Y.; Niv, A.; Kleiner, V.; Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 2008, 101, 043903. [Google Scholar] [CrossRef]
- Gorodetski, Y.; Nechayev, S.; Kleiner, V.; Hasman, E. Plasmonic Aharonov-Bohm effect: Optical spin as the magnetic flux parameter. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 82, 125433. [Google Scholar] [CrossRef]
- Bardon-Brun, T.; Delande, D.; Cherroret, N. Spin Hall effect of light in a random medium. Phys. Rev. Lett. 2019, 123, 043901. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Guo, C.; Liu, G.; Li, Y.; Yin, H.; Li, Z.; Chen, Z. Spin-orbit optical Hall effect. Phys. Rev. Lett. 2019, 123, 243904. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zheng, H.; Zhong, Y.; Yu, J.; Chen, Z. Wave-vector-varying Pancharatnam-Berry phase photonic spin Hall effect. Phys. Rev. Lett. 2021, 126, 083901. [Google Scholar] [CrossRef]
- Ling, X.; Zhou, X.; Huang, K.; Liu, Y.; Qiu, C.-W.; Luo, H.; Wen, S. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 2017, 80, 066401. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin Hall effect at metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef]
- Ling, X.; Guan, F.; Cai, X.; Ma, S.; Xu, H.X.; He, Q.; Xiao, S.; Zhou, L. Topology-induced phase transitions in spin-orbit photonics. Laser Photon. Rev. 2021, 15, 2000492. [Google Scholar] [CrossRef]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Edgar, J.S.; Jeffries, G.D.; McGloin, D.; Chiu, D.T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 2007, 99, 073901. [Google Scholar] [CrossRef]
- Vuong, L.; Adam, A.; Brok, J.; Planken, P.; Urbach, H. Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett. 2010, 104, 083903. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Ostrovskaya, E.A.; Alonso, M.A.; Rodríguez-Herrera, O.G.; Lara, D.; Dainty, C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 2011, 19, 26132–26149. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Niv, A.; Kleiner, V.; Hasman, E. Geometrodynamics of spinning light. Nat. Photonics 2008, 2, 748–753. [Google Scholar] [CrossRef]
- Bliokh, K.Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-indexmedium. J. Opt. A Pure Appl. Opt. 2009, 11, 094009. [Google Scholar] [CrossRef]
- Luo, H.; Wen, S.; Shu, W.; Fan, D. Role of transverse-momentum currents in the optical Magnus effect in free space. Phys. Rev. A—At. Mol. Opt. Phys. 2010, 81, 053826. [Google Scholar] [CrossRef]
- Aiello, A.; Lindlein, N.; Marquardt, C.; Leuchs, G. Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett. 2009, 103, 100401. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.B.; Neto, P.A.M.; Nussenzveig, H.M. Angular momentum of focused beams: Beyond the paraxial approximation. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 79, 033830. [Google Scholar] [CrossRef]
- Bekshaev, A.Y. A simple analytical model of the angular momentum transformation in strongly focused light beams. Cent. Eur. J. Phys. 2010, 8, 947–960. [Google Scholar] [CrossRef]
- Chen, B.; Pu, J. Tight focusing of elliptically polarized vortex beams. Appl. Opt. 2009, 48, 1288–1294. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse spin of a surface polariton. Phys. Rev. A—At. Mol. Opt. Phys. 2012, 85, 061801. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Bliokh, K.Y.; Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 2015, 5, 011039. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1984, 392, 45–57. [Google Scholar]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Haldane, F.D.M.; Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 2008, 100, 013904. [Google Scholar] [CrossRef]
- Wang, Z.; Chong, Y.D.; Joannopoulos, J.D.; Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Leykam, D.; Lein, M.; Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 2019, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Du, L.P.; Yang, A.P.; Zayats, A.V.; Yuan, X.C. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 2019, 15, 650–654. [Google Scholar] [CrossRef]
- Van Mechelen, T.; Jacob, Z. Photonic Dirac monopoles and skyrmions: Spin-1 quantization. Opt. Mater. Express 2019, 9, 95–111. [Google Scholar] [CrossRef]
- Tsesses, S.; Ostrovsky, E.; Cohen, K.; Gjonaj, B.; Lindner, N.H.; Bartal, G. Optical skyrmion lattice in evanescent electromagnetic fields. Science 2018, 361, 993–996. [Google Scholar] [CrossRef]
- Davis, T.J.; Janoschka, D.; Dreher, P.; Frank, B.; zu Heringdorf, F.J.M.; Giessen, H. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 2020, 368, eaba6415. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xie, X.; Zhang, C.; Zhang, Y.; Yuan, X.; Shen, Y.; Min, C. Topological Magnetic Lattices for On-Chip Nanoparticle Trapping and Sorting. Nano Lett. 2025, 25, 10611–10618. [Google Scholar] [CrossRef]
- Berry, M.V.; Dennis, M.R. Polarization singularities in isotropic random vector waves. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2001, 457, 141–155. [Google Scholar] [CrossRef]
- Leykam, D.; Bliokh, K.Y.; Huang, C.L.; Chong, Y.D.; Nori, F. Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. Phys. Rev. Lett. 2017, 118, 040401. [Google Scholar] [CrossRef]
- Wang, H.; Wojcik, C.C.; Fan, S. Topological spin defects of light. Optica 2022, 9, 1417–1423. [Google Scholar] [CrossRef]
- Wang, H.; Fan, S. Photonic spin hopfions and monopole loops. Phys. Rev. Lett. 2023, 131, 263801. [Google Scholar] [CrossRef]
- Wu, H.; Mata-Cervera, N.; Wang, H.; Zhu, Z.; Qiu, C.; Shen, Y. Photonic torons with 3D topology transitions and tunable spin monopoles. Phys. Rev. Lett. 2025, 135, 063802. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Wang, J.; Wang, X.; Wu, S.; Zhao, X.; Liu, W.; Xie, R.; Shen, Y.; Shi, L.; Zi, J. Meron spin textures in momentum space spawning from bound states in the continuum. Phys. Rev. Lett. 2025, 135, 026203. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Fan, S. Free-space topological optical textures: Tutorial. Adv. Opt. Photonics 2025, 17, 295–374. [Google Scholar] [CrossRef]
- Shen, Y.; Hou, Y.; Papasimakis, N.; Zheludev, N.I. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun. 2021, 12, 5891. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Lee, K.X.; Meiler, T.C.; Shen, Y. Topological momentum skyrmions in Mie scattering fields. Nanophotonics 2025, 14, 2211–2217. [Google Scholar] [CrossRef]
- Fang, L.; Xiang, Y.; Chen, Q.; Wen, S. Topological Spin States in 3D Coupled Electromagnetic Fields. Phys. Rev. Lett. 2025, 134, 013801. [Google Scholar] [CrossRef]
- Synge, E.H. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 1928, 6, 356–362. [Google Scholar] [CrossRef]
- Lee, K.G.; Ahn, K.J.; Kihm, H.W.; Ahn, J.S.; Kim, T.K.; Hong, S.; Kim, Z.H.; Kim, D.S. Surface plasmon polariton detection discriminating the polarization reversal image dipole effects. Opt. Express 2008, 16, 10641–10649. [Google Scholar] [CrossRef]
- Veerman, J.A.; Otter, A.M.; Kuipers, L.; van Hulst, N.F. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 1998, 72, 3115–3117. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhuang, M.D.; Zhang, H.M.; Wang, X.; Xie, Z.X.; Wu, D.Y.; Ren, B.; Tian, Z.Q. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 2007, 91, 101105. [Google Scholar] [CrossRef]
- Burresi, M.; van Oosten, D.; Kampfrath, T.; Schoenmaker, H.; Heideman, R.; Leinse, A.; Kuipers, L. Probing the Magnetic Field of Light at Optical Frequencies. Science 2009, 326, 550–553. [Google Scholar] [CrossRef]
- Mock, J.J.; Hill, R.T.; Degiron, A.; Zauscher, S.; Chilkoti, A.; Smith, D.R. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 2008, 8, 2245–2252. [Google Scholar] [CrossRef]
- Li, Y.; Rui, G.H.; Zhou, S.C.; Gu, B.; Yu, Y.Z.; Cui, Y.P.; Zhan, Q.W. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin. Opt. Express 2020, 28, 27808–27822. [Google Scholar] [CrossRef]
- Alizadeh, M.H.; Reinhard, B.M. Emergence of transverse spin in optical modes of semiconductor nanowires. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Wang, M.J.; Richey-Simonsen, L.R.; Gerton, J.M. Spectra signatures of transverse optical modes in semiconductor nanowires. Optica 2021, 8, 42–49. [Google Scholar] [CrossRef]
- Kalhor, F.; Thundat, T.; Jacob, Z. Universal spin-momentum locked optical forces. Appl. Phys. Lett. 2016, 108, 061102. [Google Scholar] [CrossRef]
- Van Mechelen, T.; Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 2016, 3, 118–126. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.Q.; Liu, X.G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers. Phys. Chem. Chem. Phys. 2019, 21, 1308–1314. [Google Scholar] [CrossRef]
- Yamanishi, J.; Ahn, H.Y.; Yamane, H.; Hashiyada, S.; Ishihara, H.; Nam, K.T.; Okamoto, H. Optical gradient force on chiral particles. Sci. Adv. 2022, 8, eabq2604. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Zhu, T.T.; Zhang, T.H.; Mazzulla, A.; Tsai, D.P.; Ding, W.Q.; Liu, A.Q.; Cipparrone, G.; Saenz, J.J.; Qiu, C.W. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light-Sci. Appl. 2020, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Wo, K.J.; Peng, J.; Prasad, M.K.; Shi, Y.Z.; Li, J.; Wang, S.B. Optical forces in coupled chiral particles. Phys. Rev. A 2020, 102, 043526. [Google Scholar] [CrossRef]
- Ding, K.; Ng, J.; Zhou, L.; Chan, C.T. Realization of optical pulling forces using chirality. Phys. Rev. A 2014, 89, 063825. [Google Scholar] [CrossRef]
- Chen, H.J.; Jiang, Y.K.; Wang, N.; Lu, W.L.; Liu, S.Y.; Lin, Z.F. Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves. Opt. Lett. 2015, 40, 5530–5533. [Google Scholar] [CrossRef]
- Xie, X.Y.; Shi, P.; Min, C.J.; Yuan, X.C. Optical backflow for the manipulations of dipolar nanoparticles. Photonics Res. 2025, 13, 2033–2045. [Google Scholar] [CrossRef]
- Li, M.M.; Yan, S.H.; Liang, Y.S.; Zhang, P.; Yao, B.L. Transverse spinning of particles in highly focused vector vortex beams. Phys. Rev. A 2017, 95, 053802. [Google Scholar] [CrossRef]
- Li, M.M.; Yan, S.H.; Yao, B.L.; Liang, Y.S.; Zhang, P. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations. Opt. Express 2016, 24, 20604–20612. [Google Scholar] [CrossRef] [PubMed]
- Magallanes, H.; Brasselet, E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photonics 2018, 12, 461–464. [Google Scholar] [CrossRef]
- Andrén, D.; Baranov, D.G.; Jones, S.; Volpe, G.; Verre, R.; Käll, M. Microscopic metavehicles powered and steered by embedded optical metasurfaces. Nat. Nanotechnol. 2021, 16, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.Y.; Albella, P.; Rahmani, M.; Giannini, V.; Maier, S.A.; Shimura, T. Plasmonic linear nanomotor using lateral optical forces. Sci. Adv. 2020, 6, eabc3726. [Google Scholar] [CrossRef]
- Wu, X.F.; Ehehalt, R.; Razinskas, G.; Feichtner, T.; Qin, J.; Hecht, B. Light-driven microdrones. Nat. Nanotechnol. 2022, 17, 477–484. [Google Scholar] [CrossRef]
- Xie, X.Y.; Wu, J.Y.; Shi, P.; Yuan, X.C. Optical skyrmions and tunable fine spin structures in deep-subwavelength scale at metal/graded index material interfaces. Opt. Express 2024, 32, 44375–44385. [Google Scholar] [CrossRef]
- Cao, S.L.; Xie, X.Y.; Shi, P.; Zhou, L.X.; Du, L.P.; Yuan, X.C. Topological stability and transitions of photonic meron lattices at the metal/uniaxial crystal interface. Photonics Res. 2025, 13, 2583–2592. [Google Scholar] [CrossRef]























| Generic EM Wave | Linear Polarized Surface EM Wave | Gravity Water Wave | Acoustic Wave | |
|---|---|---|---|---|
| Field | Electric field E; Magnetic field H; | Electric or magnetic Hertz potential Ψ; | In-plane velocity V; Normal velocity W; | Velocity v; Pressure p; |
| PM | ||||
| SAM | ||||
| Helicity | Spin-1 photon | Spin-1 photon | Spin-0 phonon | Spin-0 phonon |
| iSML |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xie, X.; Shi, P.; Shen, Y. Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications. Nanomaterials 2025, 15, 1798. https://doi.org/10.3390/nano15231798
Liu S, Xie X, Shi P, Shen Y. Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications. Nanomaterials. 2025; 15(23):1798. https://doi.org/10.3390/nano15231798
Chicago/Turabian StyleLiu, Shucen, Xi Xie, Peng Shi, and Yijie Shen. 2025. "Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications" Nanomaterials 15, no. 23: 1798. https://doi.org/10.3390/nano15231798
APA StyleLiu, S., Xie, X., Shi, P., & Shen, Y. (2025). Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications. Nanomaterials, 15(23), 1798. https://doi.org/10.3390/nano15231798

