UV-Activated NO2 Gas Sensing: Photoactivated Processes on the Surface of Metal Oxides
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanocrystalline ZnO, In2O3, and SnO2
2.2. Materials Characterization
2.3. Gas Sensing Measurements
2.4. In Situ TR-DRIFTS
2.5. In Situ Mass Spectrometry
2.6. Long-Term NO2 Adsorption Measurements
3. Results
3.1. Phase Composition and Morphology
3.1.1. Zinc Oxide
3.1.2. Indium Oxide
3.1.3. Tin Oxide
3.2. Photostimulated Processes on Pure Oxides
3.2.1. Zinc Oxide
3.2.2. Indium Oxide
3.2.3. Tin Oxide
3.3. Gas-Sensing Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TR-DRIFTS | Time-resolved diffuse reflectance infrared Fourier transform spectroscopy |
| XRD | X-ray diffraction |
| BET | Brunauer–Emmet–Teller isotherm |
| SEM | Scanning electron microscopy |
| TEM | Transmission electron microscopy |
| UV | Ultraviolet |
| LED | Light-emitting diode |
| FWHM | Full width at height maximum |
| Abs | Absorbance |
| CAPS | Cavity-attenuated phase-shift spectroscopy |
| AMU | Atomic mass unit |
| m/z | Ion mass-to-charge ratio |
| SD | Standard deviation |
| PTFE | Polytetrafluoroethylene |
References
- Wolkenstein, T. Electronic Processes on Semiconductor Surfaces During Chemisorption; Springer: New York, NY, USA, 1991; ISBN 978-0-306-11029-0. [Google Scholar]
- Moseley, P.T. Progress in the Development of Semiconducting Metal Oxide Gas Sensors: A Review. Meas. Sci. Technol. 2017, 28, 082001. [Google Scholar] [CrossRef]
- Brattain, W.H.; Bardeen, J. Surface Properties of Germanium. Bell Syst. Tech. J. 1953, 32, 1–41. [Google Scholar] [CrossRef]
- Gurlo, A.; Bârsan, N.; Weimar, U. Gas Sensors Based on Semiconducting Metal Oxides. In Metal Oxides; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-4200-2812-6. [Google Scholar]
- Das, S.; Jayaraman, V. SnO2: A Comprehensive Review on Structures and Gas Sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Strobel, B.R.; Pratsinis, S.E. Flame Synthesis of Supported Platinum Group Metals for Catalysis and Sensors: Novel flame processes allow synthesis of supported PGMs in a single step. Platin. Met. Rev. 2009, 53, 11–20. [Google Scholar] [CrossRef]
- Batal, M.A.; Jneed, F.H. Tin Oxide N-Type Semiconductor Inverted to p-Type Semiconductor Prepared by Sol-Gel Method. Energy Procedia 2011, 6, 1–10. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Han, D.; Gu, F.; Guo, G. High-Sensitivity NO2 Gas Sensors Based on Flower-like and Tube-like ZnO Nanomaterials. Sens. Actuators B Chem. 2011, 157, 565–574. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Gomri, S.; Seguin, J.-L.; Guerin, J.; Aguir, K. Adsorption–Desorption Noise in Gas Sensors: Modelling Using Langmuir and Wolkenstein Models for Adsorption. Sens. Actuators B Chem. 2006, 114, 451–459. [Google Scholar] [CrossRef]
- Bârsan, N. Conduction Models in Gas-Sensing SnO2 Layers: Grain-Size Effects and Ambient Atmosphere Influence. Sens. Actuators B Chem. 1994, 17, 241–246. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, L.; Li, K.H.H.; Tan, O.K. Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach. Micromachines 2018, 9, 557. [Google Scholar] [CrossRef]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of Sensitivity Enhancement of a ZnO Nanofilm Gas Sensor by UV Light Illumination. ACS Sens. 2019, 4, 1577–1585. [Google Scholar] [CrossRef]
- Lee, S.; Lee, G.H.; Choi, M.; Park, G.; Kim, D.; Lee, S.; Lee, J.-O.; Cho, D. Photoactivated Metal Oxide-Based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination. J. Sens. Sci. Technol. 2024, 33, 274–287. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Park, S.; Ahn, J.; Kim, I. Materials Engineering for Light-Activated Gas Sensors: Insights, Advances, and Future Perspectives. Adv. Mater. 2025, 37, e08204. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Chen, J.; Yao, X.; Chen, G.; Jiao, Z.; Zhao, J.-T.; Cheng, S.; Yang, X.-C.; Li, Q. UV-Light Enhanced Gas Sensor Based on Ga Doped ZnO for Ultra-High Sensitive and Selective n-Butanol Detection. Appl. Surf. Sci. 2023, 641, 158551. [Google Scholar] [CrossRef]
- Solomatin, M.A.; Glukhova, O.E.; Fedorov, F.S.; Sommer, M.; Shunaev, V.V.; Varezhnikov, A.S.; Nasibulin, A.G.; Ushakov, N.M.; Sysoev, V.V. The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air. Chemosensors 2021, 9, 181. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Yang, G.; Bao, J.; Kumar, M.; Kumar, M. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature. ACS Sens. 2018, 3, 998–1004. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, J.; Olivier, M.-G.; Debliquy, M. Room Temperature Nitrogen Dioxide Sensors Based on N719-Dye Sensitized Amorphous Zinc Oxide Sensors Performed under Visible-Light Illumination. Sens. Actuators B Chem. 2015, 209, 69–77. [Google Scholar] [CrossRef]
- Peng, L.; Qin, P.; Zeng, Q.; Song, H.; Lei, M.; Mwangi, J.J.N.; Wang, D.; Xie, T. Improvement of Formaldehyde Sensitivity of ZnO Nanorods by Modifying with Ru(Dcbpy)2(NCS)2. Sens. Actuators B Chem. 2011, 160, 39–45. [Google Scholar] [CrossRef]
- Watanabe, K.; Matsumoto, K.; Ohgaki, T.; Sakaguchi, I.; Ohashi, N.; Hishita, S.; Haneda, H. Development of ZnO-Based Surface Plasmon Resonance Gas Sensor and Analysis of UV Irradiation Effect on NO2 Desorption from ZnO Thin Films. J. Ceram. Soc. Jpn. 2010, 118, 193–196. [Google Scholar] [CrossRef]
- Espid, E. UV-LED Photo-Activated Metal Oxide Semiconductors for Gas Sensing Application: Fabrication and Performance Evaluation. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef] [PubMed]
- Sergent, N.; Epifani, M.; Comini, E.; Faglia, G.; Pagnier, T. Interactions of Nanocrystalline Tin Oxide Powder with NO2: A Raman Spectroscopic Study. Sens. Actuators B Chem. 2007, 126, 1–5. [Google Scholar] [CrossRef]
- Rumyantseva, M.N.; Gaskov, A.M.; Rosman, N.; Pagnier, T.; Morante, J.R. Raman Surface Vibration Modes in Nanocrystalline SnO2: Correlation with Gas Sensor Performances. Chem. Mater. 2005, 17, 893–901. [Google Scholar] [CrossRef]
- Tavaglione, E.; Spagnoli, E.; Valt, M.; Bernardoni, P.; Della Ciana, M.; Bottegoni, F.; Negri, M.; Scali, F.; Zucchetti, C.; Ferroni, M.; et al. Photosensitivity and Gas Sensing Mechanisms: Validation of an Operando DRIFT Spectroscopy Apparatus for Light-Activated Chemoresistive Gas Sensors. Sens. Actuators B Chem. 2025, 444, 138504. [Google Scholar] [CrossRef]
- Di Stasio, S.; Dal Santo, V. DRIFTS Study of Surface Reactivity to NO2 by Zinc Nanoparticle Aggregates and Zinc Hollow Nanofibers. Appl. Surf. Sci. 2006, 253, 2899–2910. [Google Scholar] [CrossRef]
- Roso, S.; Degler, D.; Llobet, E.; Barsan, N.; Urakawa, A. Temperature-Dependent NO2 Sensing Mechanisms over Indium Oxide. ACS Sens. 2017, 2, 1272–1277. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors 2022, 10, 147. [Google Scholar] [CrossRef]
- Mikhaylov, R.V.; Lisachenko, A.A.; Titov, V.V. Investigation of Photostimulated Oxygen Isotope Exchange on TiO2 Degussa P25 Surface upon UV–Vis Irradiation. J. Phys. Chem. C 2012, 116, 23332–23341. [Google Scholar] [CrossRef]
- Krivetskiy, V.V.; Andreev, M.D.; Efitorov, A.O.; Gaskov, A.M. Statistical Shape Analysis Pre-Processing of Temperature Modulated Metal Oxide Gas Sensor Response for Machine Learning Improved Selectivity of Gases Detection in Real Atmospheric Conditions. Sens. Actuators B Chem. 2021, 329, 129187. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor. Micromachines 2023, 14, 912. [Google Scholar] [CrossRef]
- Mahdavi, R.; Ashraf Talesh, S.S. The Effect of Ultrasonic Irradiation on the Structure, Morphology and Photocatalytic Performance of ZnO Nanoparticles by Sol-Gel Method. Ultrason. Sonochemistry 2017, 39, 504–510. [Google Scholar] [CrossRef]
- Ayon, S.A.; Billah, M.M.; Hossain, M.N. Effect of Annealing Temperature on Structural, Optical, and Photocatalytic Properties of Modified Sol–Gel-driven ZnO Nanoparticles. Surf. Interface Anal. 2023, 55, 443–449. [Google Scholar] [CrossRef]
- Ford, H. Seven mechanisms in the photolysis of NO2 between 3100 and 3700 Å. Can. J. Chem. 1960, 38, 1780–1794. [Google Scholar] [CrossRef]
- Wooton, D.L.; Schomburg, C.; Swanson, D. In-Service Samples: An Infrared Differential Spectra Issue. Available online: https://www.spectroscopyonline.com/view/in-service-samples-an-infrared-differential-spectra-issue (accessed on 30 September 2025).
- Woll, C. The Chemistry and Physics of Zinc Oxide Surfaces. Prog. Surf. Sci. 2007, 82, 55–120. [Google Scholar] [CrossRef]
- Pozdnyakov, D.V.; Filimonov, V.N. Infrared Study of Molecular Complexes Arising from Adsorption of NO and NO2 on the Surface of Oxides. Adv. Mol. Relax. Process. 1973, 5, 55–63. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons, Incorporated: New York, NY, USA, 2009; ISBN 978-0-471-74493-1. [Google Scholar]
- Hadjiivanov, K.I. Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy. Catal. Rev. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Qiu, Z.; Le, C.; Dai, Y.; Xu, B.; He, J.B.; Yang, R.; Chen, G.; Hu, J.; Qiu, X. Infrared Spectroscopic Studies of the Topological Properties in CaMnSb2. Phys. Rev. B 2018, 98, 115151. [Google Scholar] [CrossRef]
- Gurlo, A. Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen. ChemPhysChem 2006, 7, 2041–2052. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Gaskov, A.M.; Samoylov, A.M. Nanocrystalline Tin Dioxide: Basics in Relation with Gas Sensing Phenomena. Part I. Physical and Chemical Properties and Sensor Signal Formation. Inorg. Mater. 2015, 51, 1329–1347. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Astafiev, A.; Rumyantseva, M. Photoactivated Processes on the Surface of Metal Oxides and Gas Sensitivity to Oxygen. Sensors 2023, 23, 1055. [Google Scholar] [CrossRef] [PubMed]
- Volodin, A.M.; Zakharenko, V.S.; Cherkashin, A.E. ESR Studies of Spectral Dependences and Kinetics of O2 Photoadsorption on SnO2. React. Kinet. Catal. Lett. 1981, 18, 321–324. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. UV Light Activation of Tin Oxide Thin Films for NO2 Sensing at Low Temperatures. Sens. Actuators B Chem. 2001, 78, 73–77. [Google Scholar] [CrossRef]
- Platonov, V.; Malinin, N.; Vasiliev, R.; Rumyantseva, M. Room Temperature UV-Activated NO2 and NO Detection by ZnO/rGO Composites. Chemosensors 2023, 11, 227. [Google Scholar] [CrossRef]
- Gonzalez, O.; Roso, S.; Vilanova, X.; Llobet, E. Enhanced Detection of Nitrogen Dioxide via Combined Heating and Pulsed UV Operation of Indium Oxide Nano-Octahedra. Beilstein J. Nanotechnol. 2016, 7, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Šetka, M.; Claros, M.; Chmela, O.; Vallejos, S. Photoactivated Materials and Sensors for NO2 Monitoring. J. Mater. Chem. C 2021, 9, 16804–16827. [Google Scholar] [CrossRef]
- Izydorczyk, W. Numerical Analysis of an Influence of Oxygen Adsorption at a SnO2 Surface on the Electronic Parameters of the Induced Depletion Layer. Phys. Status Solidi B 2011, 248, 694–699. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Thevenet, F.; Rousseau, A.; Bianchi, D. NO2 Adsorption Mechanism on TiO2: An in-situ Transmission Infrared Spectroscopy Study. Appl. Catal. B Environ. 2016, 198, 411–419. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Lv, G.; Sun, X. Theoretical Insight into the Oxidation Mechanism of NO2 and SO2 on TiO2 Surface: The Role of H2O, NH3 and SO42−. Atmos. Environ. 2021, 246, 118068. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601. [Google Scholar] [CrossRef] [PubMed]
- Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K. Optical and Photoelectrical Properties of Nanocrystalline Indium Oxide with Small Grains. Thin Solid Film. 2015, 595, 25–31. [Google Scholar] [CrossRef]
- Ibrahim, A.; Al-Ani, S.K.J. Models of Optical Absorption in Amorphous Semiconductors at the Absorption Edge—A Review and Re-Evaluation. Czech. J. Phys. 1994, 44, 785–797. [Google Scholar] [CrossRef]
- Nagasawa, M.; Shionoya, S. Exciton Structure in Optical Absorption of SnO2 Crystals. Phys. Lett. 1966, 22, 409–410. [Google Scholar] [CrossRef]
- Titov, V.V.; Lisachenko, A.A.; Labzovskaya, M.E.; Akopyan, I.K.; Novikov, B.V. Exciton Channel of Photoactivation for Redox Reactions on the Surface of 2D ZnO Nanostructures. J. Phys. Chem. C 2019, 123, 27399–27405. [Google Scholar] [CrossRef]


















| Band | Assignment |
|---|---|
| 1098 | (characteristic of all symmetric N-O modes) |
| 1180 | |
| 1302–1294 | |
| 1335 | |
| 1358 | (frequently observed during decomposition of nitro-compounds) |
| 1426 | |
| 1509 | |
| 1517–1530 | , |
| 1557 |
| Band | Assignment |
|---|---|
| 1240 | |
| 1290 | |
| 1320 | |
| 1426 | |
| 1528 | |
| 1553–1574 | |
| 1602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutukov, P.; Kurtina, D.; Maksimov, S.; Rumyantseva, M. UV-Activated NO2 Gas Sensing: Photoactivated Processes on the Surface of Metal Oxides. Nanomaterials 2025, 15, 1795. https://doi.org/10.3390/nano15231795
Kutukov P, Kurtina D, Maksimov S, Rumyantseva M. UV-Activated NO2 Gas Sensing: Photoactivated Processes on the Surface of Metal Oxides. Nanomaterials. 2025; 15(23):1795. https://doi.org/10.3390/nano15231795
Chicago/Turabian StyleKutukov, Pavel, Daria Kurtina, Sergey Maksimov, and Marina Rumyantseva. 2025. "UV-Activated NO2 Gas Sensing: Photoactivated Processes on the Surface of Metal Oxides" Nanomaterials 15, no. 23: 1795. https://doi.org/10.3390/nano15231795
APA StyleKutukov, P., Kurtina, D., Maksimov, S., & Rumyantseva, M. (2025). UV-Activated NO2 Gas Sensing: Photoactivated Processes on the Surface of Metal Oxides. Nanomaterials, 15(23), 1795. https://doi.org/10.3390/nano15231795

