Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis

2.2. Characterization
3. Results and Discussions
3.1. Thermal Analysis
3.2. FT-IR Analysis
3.3. XRD Analysis
3.4. BET Analysis
3.5. AFM Analysis
3.6. SEM Analysis
3.7. VSM Analysis
3.8. Photocatalytic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jadhav, S.A.; Somvanshi, S.B.; Khedkar, M.V.; Patade, S.R.; Jadhav, K.M. Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: Visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron. 2020, 31, 11352–11365. [Google Scholar] [CrossRef]
- Divakara, S.G.; Mahesh, B. A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications. Results Eng. 2024, 21, 101702. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Sa’ed, M.; Abdullah, S.A.; Dellinger, K.; Obare, S.O.; Pathiraja, G. Magnetic zinc ferrite nanostructures: Recent advancements for environmental and biomedical applications. J. Alloys Compd. 2024, 4, 100038. [Google Scholar] [CrossRef]
- Ali, S.S.L.; Selvaraj, S.; Batoo, K.M.; Chauhan, A.; Rana, G.; Kalaichelvan, S.; Radhakrishnan, A. Green synthesis of cubic spinel ferrites and their potential biomedical applications. Ceram. Int. 2024, 50, 52159–52189. [Google Scholar] [CrossRef]
- Askarzadeh, N.; Shokrollahi, H. A review on synthesis, characterization and properties of lithium ferrites. Results Chem. 2024, 10, 101679. [Google Scholar] [CrossRef]
- Riaz, H.; Anjum, S.; Ejaz, S.R.; Khan, M.I.; Shanableh, A.; Luque, R. Multifunctional Co2+ and Cr3+ Substituted Ni-Cu Spinel Ferrites for Wastewater Remediation and Supercapacitor Applications. Results Eng. 2025, 25, 104209. [Google Scholar] [CrossRef]
- Abidin, M.Z.U.; Ikram, M.; Moeen, S.; Nazir, G.; Kanoun, M.B.; Goumri-Said, S. A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights. Coord. Chem. Rev. 2024, 520, 216158. [Google Scholar] [CrossRef]
- Hamed, A.; Fitzgerald, A.G.; Wang, L.; Gueorguieva, M.; Malik, R.; Melzer, A. Synthesis, characterization and surface modification of ZnCrFeO4 nanoparticles. Mater. Sci. Eng. C 2013, 33, 1623–1628. [Google Scholar] [CrossRef]
- Ardrey, K.D.; McAuliffe, R.D.; Armstrong, B.L. The role of ferrites in wireless charging systems for electric vehicles. J. Magn. Magn. Mater. 2024, 610, 172576. [Google Scholar] [CrossRef]
- Akbar, A.; Lakshmi, M.B.; Das, T.K.; Ghosh, M. Spinel ferrites in the photocatalytic and adsorptive remediation of dyes and heavy metals: A review. J. Water Proc. Eng. 2025, 71, 107259. [Google Scholar] [CrossRef]
- Iqbal, B.; Laybourn, A.; ul-Hamid, A.; Zaheer, M. Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceram. Int. 2021, 47, 12433–12441. [Google Scholar] [CrossRef]
- Monfared, A.H.; Zamanian, A.; Beygzadeh, M.; Sharifi, I.; Mozafari, M. A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles. J. Alloys Compd. 2017, 693, 1090–1095. [Google Scholar] [CrossRef]
- Klym, K.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron annihilation lifetime spectroscopy insight on free volume conversion of nanostructured MgAl2O4 ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef]
- Munir, S.; Warsi, M.F.; Zulfiqar, S.; Ayman, I.; Haider, S.; Alsafari, I.A.; Agboola, P.O.; Shakir, I. Nickel ferrite/zinc oxide nanocomposite: Investigating the photocatalytic and antibacterial properties. J. Saudi Chem. Soc. 2021, 25, 101388. [Google Scholar] [CrossRef]
- Hossain, M.F.; Paul, T.C.; Khan, M.N.I.; Islam, S.; Bala, P. Magnetic and dielectric properties of ZnFe2O4/nanoclay composites synthesized via sol-gel autocombustion. Mater. Chem. Phys. 2021, 271, 124914. [Google Scholar] [CrossRef]
- Dippong, T.; Goga, F.; Levei, E.-A.; Cadar, O. Influence of zinc substitution with cobalt on thermal behaviour, structureand morphology of zinc ferrite embedded in silica matrix. J. Solid State Chem. 2019, 275, 159–166. [Google Scholar] [CrossRef]
- Dippong, T.; Mereu, R.A. Effect of La3+ on thermal, structural and morphological properties of Zn–Co ferrite spinel-based pigments. Ceram. Int. 2024, 50, 10314–10324. [Google Scholar] [CrossRef]
- Stefanescu, M.; Stoia, M.; Dippong, T.; Stefanescu, O.; Barvinschi, P. Preparation of CoXFe3–XO4 Oxydic System Starting from Metal Nitrates and Propanediol. Acta Chim. Slov. 2009, 56, 379–385. [Google Scholar]
- Karadi, I.; Hiremath, V.J.; Timmanagoudar, S.; Mathad, S.N.; Mehulkumar, G. Nano Ferrites: Synthesis, Proprietes and Emerging Applications—A Comperhensive Review. J. Advis. Mater. Eng. 2025, 10, 1–21. [Google Scholar] [CrossRef]
- Shirsath, S.E.; Wang, D.; Jadhav, S.; Mane, M.L.; Li, S. Ferrites Obtained by Sol-Gel Method. In Handbook of Sol-Gel Science and Technology; Springer: Cham, Switzerland, 2017; pp. 1–41. [Google Scholar] [CrossRef]
- Dippong, T.; Toloman, D.; Lazar, M.D.; Petean, I. Effects of Lanthanum Substitution and Annealing on Structural, Morphologic, and Photocatalytic Properties of Nickel Ferrite. Nanomaterials 2023, 13, 3096. [Google Scholar] [CrossRef]
- Kibombo, H.; Ntakarutimana, F.; Nsanzumuhire, A.; Niyigena, J. Synthesis, characterization and photocatalytic behavior of SiO2@nitrized-TiO2 nanocomposites obtained by a straightforward novel approach. Chem. Open 2021, 10, 1001–1012. [Google Scholar] [CrossRef]
- Ge, Y.; Li, C.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions. Ceram. Int. 2021, 47, 1728–1739. [Google Scholar] [CrossRef]
- Suppuraj, P.; Thirunarayanan, G.; Swaminathan, M.; Muthuvel, I. Synthesis of Spinel Nanocrystalline ZnFe2O4: Enhanced Photocatalytic and Microbial Applications. Mater. Sci. Appl. Chem. 2017, 34, 5–11. [Google Scholar] [CrossRef]
- Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, S.K.; Antony, S.A. Enhanced catalytic activity and magnetic properties of spinel MnxZn1–xFe2O4 (0.0 ≤ x ≥ 1.0) nano-photocatalysts by microwave irradiation route. J. Supercond. Nov. Magn. 2016, 29, 2141–2149. [Google Scholar] [CrossRef]
- Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Urbánek, P.; Machovsky, M.; Masař, M.; Holek, M. Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 2017, 110, 87–99. [Google Scholar] [CrossRef]
- Dippong, T.; Cadar, O.; Deac, I.G.; Barbu Tudoran, L.; Levei, E.A. Influence of Ni2+ substitution by Co2+ on the morphology and magnetic properties of single domain CoαNi0.9-αZn0.1Fe2O4 nanoparticles. J. Alloys Compd. 2023, 952, 170074. [Google Scholar] [CrossRef]
- Dippong, T.; Cadar, O.; Goga, F.; Toloman, D.; Levei, E.A. Impact of Ni Content on the Structure and Sonophotocatalytic Activity of Ni-Zn-Co Ferrite Nanoparticles. Int. J. Mol. Sci. 2022, 23, 14167. [Google Scholar] [CrossRef] [PubMed]
- Powar, R.R.; Phadtare, V.D.; Parale, V.G.; Park, H.H.; Pathak, S.; Kamble, P.R.; Piste, P.B.; Zambare, D.N. Structural, morphological, and magnetic properties of ZnxCo1-xFe2O4 (0 < x < 1) prepared using a chemical co-precipitation method. Ceram. Int. 2018, 44, 20782–20789. [Google Scholar]
- Renuka, L.; Anantharaju, K.S.; Sharma, S.C.; Vidya, Y.S.; Nagaswarupa, H.P.; Prashantha, S.C.; Nagabhushana, H. Synthesis of ZnFe2O4 Nanoparticle by Combustion and Sol Gel Methods and their Structural, Photoluminescence and Photocatalytic Performance. Mater. Today Proc. 2018, 5, 20819–20826. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Han, Y.; Yu, X.; Deng, L.; Hu, L.; Gao, H.; Angadi, V.J.; Shaik, S.F.; Ubdaidullah, M. Double internal magnetic fields significantly improve photocatalytic activity over Ba0.5Sr0.5TiO3/BaFe12O19/SrFe12O19 photocatalysts. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135608. [Google Scholar] [CrossRef]
- Avram, S.E.; Birle, B.V.; Tudoran, L.B.; Borodi, G.; Petean, I. Investigation of Used Water Sediments from Ceramic Tile Fabrication. Water 2024, 16, 1027. [Google Scholar] [CrossRef]
- Badji, M.; Belalem, K.A.; Bakha, Y.; Zerdali, M. The Effect of Deposition Cycles on the Morphological Properties of Bismuth Ferrite Nanostructured Thin Films. Proceedings 2024, 105, 66. [Google Scholar] [CrossRef]
- Avram, S.E.; Tudoran, L.B.; Borodi, G.; Petean, I. Microstructural Characterization of the Mn Lepidolite Distribution in Dark Red Clay Soils. Appl. Sci. 2025, 15, 6445. [Google Scholar] [CrossRef]
- Andriyanti, W.; Nur, M.A.C.H.; Puspitarum, D.L.; Sujitno, T.; Suprihatin, H.; Purwanto, S.; Suharyadi, E. Microstructures, magnetic properties and microwave absorption of ion-implanted bismuth ferrite thin films. Phys. B Condens. Matter. 2024, 676, 415690. [Google Scholar] [CrossRef]
- Thulasi, V.; Lakshmi, P.; Jebaseelan Samuel, E.J.; Mohana Roopan, S. Fabrication of ferrite nanoparticle based improved composite piezoelectric energy harvester for biomechanical energy conversion. Mater. Sci. Eng. B 2025, 313, 117915. [Google Scholar] [CrossRef]
- Islam, S.; Rahman, M.L.; Moni, M.R.; Biswas, B.; Ahmed, M.F.; Sharmin, N. Impacts of annealing temperature on microstructure, optical and electromagnetic properties of zinc ferrites nanoparticles synthesized by polymer assisted sol-gel method. Arab. J. Chem. 2023, 16, 105186. [Google Scholar] [CrossRef]
- Lassoued, A.; Li, J.F. Structure and optical, magnetic and photocatalytic properties of Cr3+ substituted zinc nano-ferrites. J. Mol. Struct. 2022, 1262, 133021. [Google Scholar] [CrossRef]
- Hu, P.; Chen, C.; Song, J.; Tang, Z. Efficient visible-light photocatalysis of ZIF-derived mesoporous ZnFe2O4/ ZnO nanocomposite prepared by a two-step calcination method. Mater. Sci. Semicond. Process. 2018, 77, 40–49. [Google Scholar] [CrossRef]
- Sundararajan, M.; Sailaja, V.; Kennedy, L.J.; Vijaya, J.J. Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism. Ceram. Int. 2017, 43, 540–548. [Google Scholar] [CrossRef]
- Nagesh, T.; Ramesh, K.; Ashok, B.; Jyothi, B.; Kumar, B.V.; Upender, G. Insights into charge transfer via Z-scheme for Rhodamine B degradation over novel Co3O4/ZnFe2O4 nanocomposites. Opt. Mater. 2023, 143, 114140. [Google Scholar] [CrossRef]
- Miao, Z.; Tian, Y.; Li, S.; Ding, Z.; Chen, X.; Ma, W.; Chang, Y. Photocatalytic degradation of Rhodamine B over popcorn-like ZnFe2O4/CdSeGO ternary composite. J. Mater. Res. Technol. 2022, 21, 1863–1877. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, H.; Ma, J.; Kong, Y.; Komarneni, S. Efficient degradation of rhodamine B by magnetically separable ZnSeZnFe2O4 composite with the synergistic effect from persulfate. Chemosphere 2019, 237, 124547. [Google Scholar] [CrossRef]
- Sonia; Kumari, H.; Sharma, S.; Sheetal; Chahal, S.; Kumar, P.; Kumar, A. Magnetic ZnFe2O4/SnO2 nanocomposites for efficient wastewater Treatment: Structural, optical, and photocatalytic investigations. Ceram. Int. 2025, 51, 31478–31486. [Google Scholar] [CrossRef]
- Du, B.; Ye, H.; Wang, Y.; Shen, M.; Zhou, H. Tetrasulfonatomethyl-n-hexyl calix[4]resorcinarene tetrasodium assisted preparation of ZnFe2O4/ZnO composites with enhanced photodegradation performance for organic contaminants. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134733. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, X.; Hu, Z.; Zheng, L.; Tian, Y.; Tu, Y.; Hua, C.; Xue, L.; Xiong, J. Pyroelectric field drived photocatalysis by ZnFe2O4/NaNbO3 heterojunction for dye degradation through integration of solar and thermal energy. Arab. J. Chem. 2024, 17, 105996. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Devanesan, S.; Asemi, N.; Ahamed, A. Concurrent fabrication of ZnO–ZnFe2O4 hybrid nanocomposite for enhancing photocatalytic degradation of organic pollutants and its bacterial inactivation. Chemosphere 2023, 318, 137928. [Google Scholar] [CrossRef]
- Hu, T.; Li, J.; Wang, L.; Wang, H.; Zhang, Z.; Jiang, W.; Xue, C. ZnO/ZnFe2O4/zeolite composite catalyst for peroxymonosulfate oxidation and photocatalysis. Mater. Lett. 2023, 330, 133310. [Google Scholar] [CrossRef]
- Meng, X.; Yang, Y.; Zhang, L.; Liu, D.; Zheng, H.; Huo, S.; You, Y. Preparation and visible light catalytic degradation of magnetically recyclable ZnFe2O4/BiOBr flower-like microspheres. J. Alloys Compd. 2023, 954, 169981. [Google Scholar] [CrossRef]
- Ren, X.; Chen, R.; Ding, S.; Fu, N. Preparation and photocatalytic performance of a magnetically recyclable ZnFe2O4@TiO2@Ag2O p-n/Z-type tandem heterojunction photocatalyst: Degradation pathway and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130604. [Google Scholar] [CrossRef]
- Kumar, R.; Sudhaik, A.; Sonu; Raizada, P.; Nguyen, V.-H.; Le, Q.V.; Ahamad, T.; Thakur, S.; Hussain, C.M.; Singh, P. Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere 2023, 337, 139267. [Google Scholar] [CrossRef] [PubMed]
- Syed, J.A.S.; Huang, Y.; Han, N.; Fang, J.-B.; Zi, T.-Q.; Li, A.-D. Magnetically separable Z-scheme ZnFe2O4/MoS2 photocatalyst for boosting photo-Fenton degradation activity by a hole-mediated mechanism. J. Alloys Compd. 2024, 990, 174508. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, Z.; Li, C.; Ding, M. Composite ZnFe2O4/SrWO4 hollow microspheres as catalyst for high-performance photo-Fenton degradation. Ceram. Int. 2024, 50, 24063–24069. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Zhang, Y.; Gao, H.; Zhou, X.; Li, D.; Yang, H.; Fang, L.; Zhang, H.; Syed, A. Novel high entropy alloy/NiAl2O4 photocatalysts for the degradation of tetracycline hydrochloride: Heterojunction construction, performance evaluation and mechanistic insights. Ceram. Int. 2024, 50, 29528–29546. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Zhang, Y.; Yu, X.; Gao, H.; Yang, H.; Fang, L.; Zhang, H.; Syed, A. Utilization of stable and efficient high-entropy (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 catalyst with polyvalent transition metals to boost peroxymonosulfate Activation toward pollutant degradation. Small 2025, 21, 2410819. [Google Scholar] [CrossRef]
- Pathania, A.; Thakur, P.; Trukhanov, A.V.; Trukhanov, S.V.; Panina, L.V.; Luders, U.; Thakur, A. Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application. Results Phys. 2019, 15, 10253. [Google Scholar] [CrossRef]











| Sample | Temp [°C] | DCS, [nm] | a, [Å] | V, [Å3] | dp [g/cm3] | dXRD [g/cm3] | P [%] | dA [nm] | dB [nm] |
|---|---|---|---|---|---|---|---|---|---|
| (ZnFe2O4)0.5/(SiO2)0.5 | 400 | 35 | 8.345 | 581 | 4.554 | 5.512 | 17.4 | 3.613 | 2.950 |
| 700 | 54 | 8.352 | 583 | 4.586 | 5.493 | 16.5 | 3.617 | 2.953 | |
| 1000 | 79 | 8.367 | 586 | 4.625 | 5.465 | 15.4 | 3.623 | 2.958 | |
| ZnFe2O4 | 400 | 32 | 8.375 | 587 | 4.388 | 5.456 | 19.6 | 3.626 | 2.961 |
| 700 | 48 | 8.389 | 590 | 4.375 | 5.428 | 19.4 | 3.632 | 2.966 | |
| 1000 | 69 | 8.411 | 595 | 4.362 | 5.383 | 19.0 | 3.642 | 2.974 | |
| Errors | - | ±2.0 | ±0.015 | ±1.0 | ±0.011 | ±0.016 | ±1.0 | ±0.010 | ±0.010 |
| Sample | Temperature [°C] | Height [nm] | Rq Roughness [nm] | Average Particle Diameter [nm] |
|---|---|---|---|---|
| ZnFe2O4 | 400 | 48 ± 1.44 | 4.01 ± 0.24 | 35 ± 2.1 |
| 700 | 61 ± 1.83 | 6.83 ± 0.40 | 52 ± 3.12 | |
| 1000 | 91 ± 2.73 | 12.6 ± 0.75 | 72 ± 4.32 | |
| SiO2 | 400 | 18 ± 0.54 | 2.04 ± 0.12 | 40 ± 2.4 |
| 700 | 62 ± 1.86 | 5.10 ± 0.30 | 58 ± 3.48 | |
| 1000 | 51 ± 1.53 | 7.37 ± 0.44 | 84 ± 5.04 | |
| (ZnFe2O4)0.5/(SiO2)0.5 | 400 | 22 ± 0.66 | 1.89 ± 0.11 | 55 ± 3.3 |
| 700 | 49 ± 1.47 | 3.15 ± 0.18 | 65 ± 3.9 | |
| 1000 | 73 ± 2.19 | 11.2 ± 0.67 | 98 ± 5.88 |
| Sample | Lights | Dyes | k × 10−3 | Reference |
|---|---|---|---|---|
| (ZnFe2O4)0.5(SiO2)0.5 | Visible | Rhodamine B | 14.1 | This work |
| ZnFe2O4/ ZnO | Visible | Rhodamine B | 3.5 | [36] |
| Co0.6Zn0.4Fe2O4 | Visible | Rhodamine B | 15.1 | [37] |
| Co3O4/ZnFe2O4 | Visible | Rhodamine B | 9.32 | [38] |
| ZnFe2O4/Cd-Se5GO | Visible | Rhodamine B | 16.40 | [54] |
| ZnS/K2S2O8 | Visible | Rhodamine B | 11.98 | [40] |
| 20%ZnFe2O4/80%SnO2 | Visible | Rhodamine B | 38 | [41] |
| 33.3%ZnFe2O4/66.7%SnO2 | Visible | Rhodamine B | 33 | [41] |
| THCRT/ ZnFe2O4/ZnO | Visible | Rhodamine B | 32.9 | [42] |
| THCRT/ ZnFe2O4/ZnO | Visible | Rhodamine B | 22.6 | [42] |
| ZnFe2O4/ZnO-0.1 | Visible | Rhodamine B | 18.5 | [42] |
| ZnFe2O4/NaNbO3 | Visible | Rhodamine B | 21.5 | [43] |
| ZnO–ZnFe2O4 | Visible | Rhodamine B | 18.5 | [44] |
| ZnO/ZnFe2O4/zeolite/ PMS | Visible | Rhodamine B | 10 | [45] |
| ZnFe2O4/BiOBr | Visible | Rhodamine B | 7.8 | [46] |
| ZnFe2O4@TiO2@Ag2O | Visible | Rhodamine B | 10.2 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dippong, T.; Savolszki-Madaras, A.-M.; Reiz, R.M.; Petean, I.; Cadar, O. Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications. Nanomaterials 2025, 15, 1644. https://doi.org/10.3390/nano15211644
Dippong T, Savolszki-Madaras A-M, Reiz RM, Petean I, Cadar O. Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications. Nanomaterials. 2025; 15(21):1644. https://doi.org/10.3390/nano15211644
Chicago/Turabian StyleDippong, Thomas, Anamaria-Magdalena Savolszki-Madaras, Raul Marius Reiz, Ioan Petean, and Oana Cadar. 2025. "Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications" Nanomaterials 15, no. 21: 1644. https://doi.org/10.3390/nano15211644
APA StyleDippong, T., Savolszki-Madaras, A.-M., Reiz, R. M., Petean, I., & Cadar, O. (2025). Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications. Nanomaterials, 15(21), 1644. https://doi.org/10.3390/nano15211644

