In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation
Abstract
1. Introduction
2. Experimental Sections
2.1. Preparation of Bulk g-C3N4
2.2. Preparation of g-C3N4 Nanosheets
2.3. Preparation of Reduced Graphene Oxide/Bulk g-C3N4
2.4. Preparation of Reduced Graphene Oxide/g-C3N4 Nanosheets (SCN/GR)
2.5. Photoelectrochemical Measurements
2.6. Photocatalytic Tests
3. Results and Discussion
3.1. Materials Characterization
3.2. Physicochemical Properties of Photocatalysts
3.3. Photocatalytic Performance
3.4. Stability of SCN/GR
3.5. Photocatalytic Mechanism of SCN/GR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; Jery, A.E.; Khezami, L.; Aymen, A.A. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process Eng. 2021, 42, 102089. [Google Scholar] [CrossRef]
- Sui, S.; Quan, H.; Yang, X.; Dong, X.; Ji, Y.; Liu, C.; Xu, G.; Guo, S.; Zhang, Y. Multifunctional modified polyurethane sponge for recovery of oil spills and photocatalytic degradation. Compos. Part B-Eng. 2024, 271, 111176. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.Y.; Yan, S.W.; Yang, J.; Jia, X.H.; Song, H.J. Bioinspired graphene aerogels with hybrid wettability for solar-driven purification of complex wastewater. ACS Appl. Mater. Interfaces 2024, 16, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Liu, A.; Hao, L. The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation. Nanomaterials 2025, 15, 1290. [Google Scholar] [CrossRef]
- Chin, J.Y.; Ahmad, A.L.; Low, S.C. Evolution of photocatalytic membrane for antibiotics degradation: Perspectives and insights for sustainable environmental remediation. J. Water Process Eng. 2023, 51, 103342. [Google Scholar] [CrossRef]
- Sun, F.; Xu, D.; Xie, Y.; Liu, F.; Qi, H.; Shao, H.; Yang, Y.; Yu, H.; Yu, W.; Dong, X. Environmentally friendly self-assembly strategy to fabricate novel S and O co-doped carbon nitride aerogel photocatalyst with improved photocatalytic degradation capability. J. Environ. Chem. Eng. 2023, 11, 109795. [Google Scholar]
- Wang, C.; Zhan, Z.; Liu, H.; Li, Y.; Wu, J.; Sun, P.; Shen, G. Single-atom iron cocatalyst for highly enhancing TiO2 photocatalytic degradation of antibiotics and antibiotic-resistant genes. J. Chem. Eng. 2024, 482, 148906. [Google Scholar] [CrossRef]
- Qi, K.; Wang, Z.; Xie, X.; Wang, Z. Photocatalytic performance of pyrochar and hydrochar in heterojunction photocatalyst for organic pollutants degradation: Activity comparison and mechanism insight. J. Chem. Eng. 2023, 467, 143424. [Google Scholar] [CrossRef]
- Tao, Y.; Mou, Z.; Lei, W. Improving adsorption and visible light photocatalytic performance of TiO2 via synergistic effect of nitrogen-doped graphene quantum dots and reduced mildly oxidized graphene oxide for cationic dye pollutants removal. Surf. Interfaces 2024, 46, 104150. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Wang, M.; Yue, D.; Wu, J.; Song, H. Constructing NH2-MIL-125(Ti) derived evaporator for simultaneous photocatalytic decontamination and water evaporation. Sep. Purif. Technol. 2025, 361, 131567. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L.; Zhao, D.; Teng, J.; Chen, C.; Zeng, Q.; Raza, S.; Lin, H.; Jiang, Z. Design and fabrication of covalent organic frameworks doped membranes and their application advances in desalination and wastewater treatment. Coord. Chem. Rev. 2024, 514, 215873. [Google Scholar]
- Chu, C.; Chen, Z.; Yao, D.; Liu, X.; Cai, M.; Mao, S. Large-Scale Continuous and In Situ Photosynthesis of Hydrogen Peroxide by Sulfur-Functionalized Polymer Catalyst for Water Treatment. Angew. Chem. Int. Ed. 2024, 63, e202317214. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Jia, X.; Yang, J.; Miao, X.; Shao, D.; Wu, J.; Song, H. 2D/2D ultrathin polypyrrole heterojunct aerogel with synergistic photocatalytic-photothermal evaporation performance for efficient water purification. Desalination 2024, 574, 117295. [Google Scholar] [CrossRef]
- Yuan, B.; Wei, J.; Hu, T.; Yao, H.; Jiang, Z.; Fang, Z.; Chu, Z. Simple synthesis of g-C3N4/rGO hybrid catalyst for the photocatalytic degradation of rhodamine B. Chin. J. Catal. 2015, 36, 1009–1016. [Google Scholar] [CrossRef]
- Zheng, N.; Zhang, Y.; Dong, C.; Chen, Z.; Chen, J.B. Morphology–Coordination Coupling of Fe–TCPP and g-C3N4 Nanotubes for Enhanced ROS Generation and Visible-Light Photocatalysis. Nanomaterials 2025, 15, 1465. [Google Scholar] [CrossRef]
- Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging chemical functionalization of g-C3N4: Covalent/noncovalent modifications and applications. ACS Nano 2020, 14, 12390–12469. [Google Scholar] [CrossRef]
- Xu, T.; Xia, Z.; Li, H.; Niu, P.; Wang, S.; Li, L. Constructing Crystalline g-C3N4/g-C3N4−xSx Isotype Heterostructure for Efficient Photocatalytic and Piezocatalytic Performances. Energy Environ. Sci. 2023, 6, e12306. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, T.; Cheng, S. Spillover separation for massive production of sheet-like g-C3N4 with enhanced photocatalytic H2-evolution performance. Surf. Interfaces 2025, 58, 105844. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, M.; Nie, C. In-situ interspersed geopolymer nanoclusters on nitrogen defective g-C3N4 to promote the matching of adsorption and photocatalytic kinetics. Surf. Interfaces 2025, 60, 106050. [Google Scholar] [CrossRef]
- Chen, M.; Sun, M.; Cao, X.; Wang, H.; Xia, L.; Jiang, W.; Huang, M.; He, L.; Zhao, Y.; Zhou, X. Progress in preparation, identification and photocatalytic application of defective g-C3N4. Coord. Chem. Rev. 2024, 510, 215849. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Xu, R.; Wu, J.; Li, S.; Song, H. One-step preparation of hierarchical porous graphitic carbon nitride photocatalyst for wastewater treatment under real sunlight. Colloids Surf. A 2024, 699, 134718. [Google Scholar] [CrossRef]
- Lu, N.; Wang, P.; Su, Y.; Yu, H.; Liu, N.; Quan, X. Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin. Chemosphere 2019, 215, 444–453. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, R. Enhanced Photocatalytic Performance of N-rGO/g-C3N4 Nanocomposites for efficient Solar-Driven Water Remediation. Nanoscale 2024, 16, 6109. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hou, W.; Huang, K.; Guo, H.; Wang, Z.; Lian, C.; Zhang, J.; Wu, D.; Lei, Z.; Liu, Z.; et al. Engineering Built-In Electric Field Microenvironment of CQDs/g-C3N4 Heterojunction for Efficient Photocatalytic CO2 Reduction. Adv. Sci. 2024, 11, e2403607. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, G.; Yin, W.; Zhang, Y.; Shi, L. Precise defect engineering g-C3N4 fabrication to improve hydrogen production performance. Fuel 2024, 362, 130743. [Google Scholar] [CrossRef]
- Qiao, J.; Jia, X.; Zhang, L.; Zhang, J.; Song, Z.; Wang, X.; Liu, Y. Phosphorus-doped C3N4 supported Fe-Ni-MOF heterojunction: A highly efficient photocatalyst for selective benzene hydroxylation. J. Photochem. Photobiol. A Chem. 2025, 470, 116607. [Google Scholar] [CrossRef]
- Hao, S.; Zhao, X.; Cheng, Q.; Xing, Y.; Ma, W.; Wang, X.; Zhao, G.; Xu, X. A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials. Front. Chem. 2020, 8, 582146. [Google Scholar] [CrossRef]
- Li, N.; Zhou, J.; Sheng, Z.; Xiao, W. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 430, 218–224. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, Q.; Li, Z.; Hu, X.; Liu, E.; Fan, J. Lateral heterojunctions within ultrathin FeS-FeSe2 nanosheet semiconductors for photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 3828–3841. [Google Scholar] [CrossRef]
- Ling, G.Z.S.; Ng, S.F.; Ong, W.J. Tailor-Engineered 2D Cocatalysts: Harnessing Electron-Hole Redox Center of 2D g-C3N4 Photocatalysts toward Solar-to-Chemical Conversion and Environmental Purification. Adv. Funct. Mater. 2022, 32, 2111875. [Google Scholar] [CrossRef]
- Yan, S.; Song, H.; Li, Y.; Yang, J.; Jia, X.; Wang, S.; Yang, X. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B Environ. 2022, 301, 120820. [Google Scholar] [CrossRef]
- Altendji, K.; Hamoudi, S. Efficient Photocatalytic Degradation of Aqueous Atrazine over Graphene-Promoted g-C3N4 Nanosheets. Catalysts 2023, 13, 1265. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Ma, W.; Bai, X.; Ru, X.; Zhang, L.; Zhong, S.; Shu, X. Three-dimensional recyclable FeS2/reduced graphene oxide aerogel with high porosity reticulated structure for efficient removal of tylosin tartrate. Sep. Purif. Technol. 2023, 324, 124463. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Xu, Y. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chin. J. Catal. 2022, 43, 708–730. [Google Scholar] [CrossRef]
- Lökçü, E.; Kaçar, N.; Çayirli, M.; Özden, R.C.; Anik, M. Photoassisted charging of Li-Ion oxygen batteries using g-C3N4/rGO nanocomposite photocatalysts. ACS Appl. Mater. Interfaces 2022, 14, 34583–34592. [Google Scholar] [CrossRef]
- Sun, L.; Du, T.; Hu, C.; Chen, J.; Lu, J.; Lu, Z.; Han, H. Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 2017, 5, 8693–8701. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Liu, S. Enhanced photocatalytic activity and optical response mechanism of porous graphitic carbon nitride (g-C3N4) nanosheets. Mater. Res. Bull. 2021, 140, 111263. [Google Scholar] [CrossRef]
- Miao, X.; Ji, Z.; Wu, J. g-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst. J. Colloid Interface Sci. 2017, 502, 24–32. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Peng, X. A novel route to manufacture 2D layer MoS2 and g-C3N4 by atmospheric plasma with enhanced visible-light-driven photocatalysis. Nanomaterials 2019, 9, 1139. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Feng, W. Gas-phase fluorination of g-C3N4 for enhanced photocatalytic hydrogen evolution. Nanomaterials 2022, 12, 37. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zeng, X.; Xia, F.; Fang, W.; He, X.; Li, W.; Du, X.; Wang, D.; Chen, H. In-situ prepare graphene/g-C3N4 D-π-A in-plane heterojunctions for high-performance photocatalytic hydrogen production. J. Int. Hydrogen Energy 2023, 48, 20290–20302. [Google Scholar]
- Qian, B.; Yang, X.; Li, X.; Song, Z. Fabrication of 1D/2D p-g-C3N4@RGO heterostructures with superior visible-light photoelectrochemical cathodic protection performance. J. Solid State Electrochem. 2020, 24, 1669–1678. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, Y.; Li, R.; Zhang, Y.; Yue, D.; Zhao, S.; Chen, M.; Song, H. In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation. Nanomaterials 2025, 15, 1641. https://doi.org/10.3390/nano15211641
Wang M, Li Y, Li R, Zhang Y, Yue D, Zhao S, Chen M, Song H. In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation. Nanomaterials. 2025; 15(21):1641. https://doi.org/10.3390/nano15211641
Chicago/Turabian StyleWang, Mengyao, Yong Li, Rui Li, Yali Zhang, Deyun Yue, Shihao Zhao, Maosong Chen, and Haojie Song. 2025. "In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation" Nanomaterials 15, no. 21: 1641. https://doi.org/10.3390/nano15211641
APA StyleWang, M., Li, Y., Li, R., Zhang, Y., Yue, D., Zhao, S., Chen, M., & Song, H. (2025). In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation. Nanomaterials, 15(21), 1641. https://doi.org/10.3390/nano15211641
