Application of Nanomaterials in Efficient Energy Conversion and Storage
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.F.; Uchaker, E.; Candelaria, S.L.; Cao, G.Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Guivar, J.A.; Flores-Cano, D.A.; Caetano, P.E. Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: A critical review. Nanomaterials 2021, 11, 2310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Liang, X.; Zheng, D.; Wang, J.; Yin, C.G. Advances in enhancing the photothermal performance of nanofluid-based direct absorption solar collectors. Nanomaterials 2025, 15, 1428. [Google Scholar] [CrossRef]
- Khan, Z.U.; Jiang, J.H.; Muhammad, A. Nanostructured bimetallic oxide/graphene nanocomposites for next-generation high-performance energy storage. Int. J. Environ. Res. 2025, 9, 223. [Google Scholar] [CrossRef]
- András, T. Nanomaterials for zinc batteries-aerogels. Nanomaterials 2025, 15, 194. [Google Scholar]
- Lu, Y.; Liu, C.B.; Zhang, L.Z.; Chen, F.; Qian, J.C.; Meng, X.R.; Chen, Z.G.; Zhong, S.; He, B. N3C-defect-tuned g-C3N4 photocatalysts: Structural optimization and enhanced tetracycline degradation performance. Nanomaterials 2025, 15, 466. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Mo, J.H.; Wang, H.T.; Liu, J.; He, G.G.; He, X.H.; Song, Y.Y. The effect of deep cryogenic treatment on the electrocatalytic performance of a Pd@CFs catalyst for methanol oxidation. Nanomaterials 2025, 15, 338. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.J.; Kim, T.H.; Kim, H.W.; Jeon, D.M.; Han, J. Improving electrochemical performance of ultrahigh-loading cathodes via the addition of multi-walled carbon nanotubes. Nanomaterials 2025, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Orthner, H.; Wiggers, H. Spray-Flame synthesis (SFS) and characterization of Li1.3Al0.3-xYxTi1.7(PO4)3[LA(Y)TP] solid electrolytes. Nanomaterials 2025, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Lau, I.; Campbell, A.I.O.; Ghosh, D.; Pope, M.A. Patterning Planar, Flexible Li-S battery full cells on laser-induced graphene traces. Nanomaterials 2025, 15, 35. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, G. Application of Nanomaterials in Efficient Energy Conversion and Storage. Nanomaterials 2025, 15, 1635. https://doi.org/10.3390/nano15211635
He G. Application of Nanomaterials in Efficient Energy Conversion and Storage. Nanomaterials. 2025; 15(21):1635. https://doi.org/10.3390/nano15211635
Chicago/Turabian StyleHe, Gege. 2025. "Application of Nanomaterials in Efficient Energy Conversion and Storage" Nanomaterials 15, no. 21: 1635. https://doi.org/10.3390/nano15211635
APA StyleHe, G. (2025). Application of Nanomaterials in Efficient Energy Conversion and Storage. Nanomaterials, 15(21), 1635. https://doi.org/10.3390/nano15211635
