Greener Solutions in Aflatoxin Management: Transitioning from Conventional Binders to Green Nanotechnology
Abstract
1. Introduction
2. Mitigating Aflatoxin Exposure Using Toxin Binders
2.1. Inorganic and Organic Toxin Binders
2.1.1. Inorganic Binders
Activated Carbon or Charcoal
Silicates (Clay)
2.1.2. Organic Binders
Yeast Cell Walls (YCW)
Micro-Ionised Fibre
2.2. Applications of Conventional Binders in Aflatoxin Management
Type of Binder | Applications | Mechanism of Action | Aflatoxin Binding Efficiency (%) | References |
---|---|---|---|---|
Activated Carbon | Detoxification of aflatoxin-contaminated animal feed | Adsorbs aflatoxins via a highly porous surface and micro/mesopores, trapping toxins physically | >99.5 | [46] |
Bentonite | Aflatoxin adsorption in livestock feed | Surface adsorption and ion exchange on layered aluminosilicate structure | 86–98.5 | [25,47] |
Hydrated Sodium Calcium Aluminosilicate (HSCAS) | Reduces aflatoxin bioavailability in animals | Formation of stable inclusion complexes preventing absorption | 83–100 | [25,46] |
Diatomite | Adsorption of aflatoxin in feed | High surface area adsorption via porous silica mineral structure | 90–95 | [46] |
Esterified Glucomannan | Mycotoxin binding in gastrointestinal tract | Adsorption via polysaccharide chains that trap aflatoxins | 96.6 | [46] |
Zeolite | Binding polar aflatoxin molecules in feed | Ion–exchange and adsorption on aluminosilicate framework | 80 | [46,48] |
Montmorillonite | General adsorption of aflatoxins in animal feeds | Adsorption onto layered clay minerals, ion–exchange interactions | 41 | [46,47] |
Yeast Cell Walls | Adsorption and reduction of aflatoxins in digestive tract | Binding of aflatoxins by polysaccharide components (glucans, mannans) | Moderate | [43,49] |
Lactobacilli (Probiotics) | Biodegradation and binding of aflatoxins in feeds | Mycotoxin binding to bacterial cell walls and enzymatic degradation | Moderate | [50,51] |
Sepiolite | Mycotoxin adsorption in animal feeds | Adsorption via fibrous clay mineral structure | 95 | [25] |
Aluminosilicate | Multi-mycotoxin capture in feed | Adsorption and ion exchange on aluminosilicate clays | Variable | [25] |
3. Aflatoxin Mitigation Through Nanotechnology
3.1. Mechanisms of Action of Nanoparticles in Aflatoxin Control
3.2. Green Nanotechnology
3.3. Bioactive Plant Phytochemicals and Their Role in Green-Synthesis of Nanoparticles
3.4. Green-Synthesised Nanoparticles as Biosorbents
4. Encapsulation of Green-Synthesised Nanoparticles Using β-Cyclodextrin for Enhanced Aflatoxin Detoxification/Degradation
- •
- Toroidal-shaped Cavity Structure that allows them to encapsulate guest molecules, through host–guest interactions, accommodating molecules of appropriate size and shape [100].
- •
- Hydrophilic Outer Surface, which facilitates interactions with water molecules and enhances the solubility of the cyclodextrin–metabolite complex.
- •
- Selective binding capacity towards certain molecules based on their size, shape, and polarity, which allows it to specifically target and remove toxic molecules from a mixture of compounds [101].
- •
- Biocompatibility, making it suitable for various biomedical and pharmaceutical applications [102].
- •
- Thermal Stability to withstand a wide range of environmental conditions [103].
4.1. Methods Used for Nanoencapsulation
4.1.1. Co-Precipitation
4.1.2. Solvent Evaporation
4.1.3. Kneading
4.1.4. Freeze-Drying
4.1.5. Spray Drying
4.2. Limitations, Regulatory and Safety Concerns in the Use of Green Nanotechnology for Aflatoxin Management
4.2.1. Stability and Cost-Effectiveness
4.2.2. Regulatory Hurdles
4.2.3. Impact on Human and Animal Health
4.2.4. Impact on the Environment
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sultan, H.M.; Sidra, N.; Qurat Ul, A.; Fizza, H.; Usama, A.; Muhammad, Z.; Amina, B.; Fatima, I. A Comprehensive Review on Aflatoxin Contamination, Its Impact on Human Health and Management Strategies. J. Health Rehabil. Res. 2024, 4, 1212–1220. [Google Scholar] [CrossRef]
- Dhakal, A.; Hashmi, M.F.; Sbar, E. Aflatoxin Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Okechukwu, V.O.; Adelusi, O.A.; Kappo, A.P.; Njobeh, P.B.; Mamo, M.A. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem. 2023, 436, 137775. [Google Scholar] [CrossRef] [PubMed]
- Ayofemi Olalekan Adeyeye, S. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 709–721. [Google Scholar] [CrossRef]
- Adelusi, O.A.; Gbashi, S.; Adebo, J.A.; Aasa, A.O.; Oladeji, O.M.; Kah, G.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Seasonal and geographical impact on the mycotoxigenicity of aspergillus and fusarium species isolated from smallholder dairy cattle feeds and feedstuffs in Free State and Limpopo provinces of South Africa. Toxins 2023, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Nabwire Wangia-Dixon, R.; Xue, K.S.; Alcala, J.; Quach, T.H.T.; Song, X.; Tang, L.; Ombaka, J.; Githanga, D.P.; Anzala, O.A.; Wang, J.-S. Nutrition and growth outcomes are affected by aflatoxin exposures in Kenyan children. Food Addit. Contam. Part A 2020, 37, 2123–2134. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.; Rivas-Caceres, R.R.; Salem, A.Z. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, S.; Sunaoka, M.; Terada, M.; Sakoda, A.; Ishijima, N.; Hakoshima, N.; Uchida, K.; Enomoto, H.; Furukawa, T. Inhibition of Aflatoxin Production in Aspergillus flavus by a Klebsiella sp. and Its Metabolite Cyclo (l-Ala-Gly). Toxins 2024, 16, 141. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Eaton, D.L.; Williams, D.E.; Coulombe, R.A. Species differences in the biotransformation of aflatoxin B1: Primary determinants of relative carcinogenic potency in different animal species. Toxins 2025, 17, 30. [Google Scholar] [CrossRef]
- Odabas, E.; Yussuf, N.H.; Afacan, F.O.; Kayisoglu, C.; González-Curbelo, M.Á.; Kabak, B. Determination of aflatoxins and ochratoxin A contamination in sesame seed and coconut powder products commercialized in Turkey. J. Food Compos. Anal. 2025, 144, 107749. [Google Scholar] [CrossRef]
- Alahlah, N.; El Maadoudi, M.; Bouchriti, N.; Triqui, R.; Bougtaib, H. Aflatoxin M1 in UHT and powder milk marketed in the northern area of Morocco. Food Control 2020, 114, 107262. [Google Scholar] [CrossRef]
- Liu, D.; Li, W.; Zhu, C.; Li, Y.; Shen, X.; Li, L.; Yan, X.; You, T. Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC Trends Anal. Chem. 2020, 133, 115966. [Google Scholar] [CrossRef]
- Martinez, J.; Hernandez-Rodriguez, M.; Mendez-Albores, A.; Tellez-Isaias, G.; Mera Jimenez, E.; Nicolas-Vazquez, M.I.; Miranda Ruvalcaba, R. Computational Studies of Aflatoxin B(1) (AFB(1)): A Review. Toxins 2023, 15, 135. [Google Scholar] [CrossRef]
- Ye, T.; Yan, H.; Wang, X.; Zhao, W.; Tao, F.; Zhou, Y. Determination of four aflatoxins on dark tea infusions and aflatoxin transfers evaluation during tea brewing. Food Chem. 2023, 405, 134969. [Google Scholar] [CrossRef]
- Bishnu, P.; De, P.; Hayat, A.; Roy, D.; Das, S.; Mahato, M.K. Modern approaches in aflatoxin free groundnut production. Adv. Agric. Sci. 2022, 37, 22271. [Google Scholar]
- Kwigizile, O.H.; Mbega, E.R.; Mng’ong’o, M.E.; Mushongi, A.; Philipo, M. Prevalence of aflatoxigenic fungi and contamination in soils and maize grains from aflatoxin-hot spot areas in Tanzania. J. Food Compos. Anal. 2024, 135, 106608. [Google Scholar] [CrossRef]
- Monger, A.; Mongar, P.; Dorji, T.; Chhetri, V. The occurrence and human health risk assessment of total and aflatoxin B1 in selected food commodities in Bhutan. Sci. Rep. 2024, 14, 16258. [Google Scholar] [CrossRef]
- da Silva, J.V.B.; de Oliveira, C.A.F.; Ramalho, L.N.Z. Effects of prenatal exposure to aflatoxin B1: A review. Molecules 2021, 26, 7312. [Google Scholar] [CrossRef]
- Amir, M.; Shahzad, A.; Faraz, A.; Sajid, M.; Afzal, K.; Naeem, I.; Ismail, A.; Mumtaz, Z. Health effects of aflatoxins in fetus, infants, and children. In Aflatoxins in Food: A Recent Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 99–122. [Google Scholar]
- Patel, T.K. Mycotoxins: Challenges and Strategies for Mitigation. In Mycological Inventions for Sustainable Agriculture and Food Production; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 377–406. [Google Scholar]
- Sultana, T.; Malik, K.; Raja, N.I.; Mashwani, Z.-U.-R.; Hameed, A.; Ullah, R.; Alqahtani, A.S.; Sohail. Aflatoxins in peanut (Arachis hypogaea): Prevalence, global health concern, and management from an innovative nanotechnology approach: A mechanistic repertoire and future direction. ACS Omega 2024, 9, 25555–25574. [Google Scholar] [CrossRef]
- Berillo, D.; Ermukhambetova, A. The review of oral adsorbents and their properties. Adsorption 2024, 30, 1505–1527. [Google Scholar] [CrossRef]
- Ahmadou, A.; Brun, N.; Napoli, A.; Durand, N.; Montet, D. Binders used in feed for their protection against mycotoxins. In Mycotoxins in Food and Beverages; CRC Press: Boca Raton, FL, USA, 2021; pp. 175–186. [Google Scholar]
- Kihal, A.; Rodríguez-Prado, M.; Calsamiglia, S. The efficacy of mycotoxin binders to control mycotoxins in feeds and the potential risk of interactions with nutrient: A review. J. Anim. Sci. 2022, 100, skac328. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, H.; Yin, J.; Yao, D.; Xia, Y.; Zuo, K.; Zeng, Y.-P. Air activation of charcoal monoliths for capacitive energy storage. RSC Adv. 2021, 11, 15118–15130. [Google Scholar] [CrossRef]
- Albertson, T.E.; Owen, K.P.; Sutter, M.E.; Chan, A.L. Gastrointestinal decontamination in the acutely poisoned patient. Int. J. Emerg. Med. 2011, 4, 65. [Google Scholar] [CrossRef]
- Zellner, T.; Prasa, D.; Färber, E.; Hoffmann-Walbeck, P.; Genser, D.; Eyer, F. The use of activated charcoal to treat intoxications. Dtsch. Aerzteblatt Int. 2019, 116, 311–317. [Google Scholar] [CrossRef]
- Assis, J.R.D.; Assis, A.C.M.D.; Fernandes, G.A.; Silva, E.B.D.; Silva, J.F.D.; Morales, R.L.; Galdos-Riveros, A.C.; Cruz, I.V. Mycotoxin absorbents in dairy cattle. Sci. Electron. Arch. 2021, 14. [Google Scholar] [CrossRef]
- Gumiński, R.; Skoczko, I. Preparation of Granular Activated Carbons Using Various Binders. Proceedings 2020, 51, 27. [Google Scholar] [CrossRef]
- Hatch, R.C.; Clark, J.D.; Jain, A.V.; Weiss, R. Induced acute aflatoxicosis in goats: Treatment with activated charcoal or dual combinations of oxytetracycline, stanozolol, and activated charcoal. Am. J. Vet. Res. 1982, 43, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Obaid, R.S.; Al-Warshan, S.H.; Abed, I.A. The ability of some clay minerals and activated charcoal to reduce the negative effects of aflatoxin b1, a contaminant of broiler diet. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Babylon, Iraq, 15–16 October 2023; p. 072072. [Google Scholar]
- Ahn, J.Y.; Kim, J.; Cheong, D.H.; Hong, H.; Jeong, J.Y.; Kim, B.G. An in vitro study on the efficacy of mycotoxin sequestering agents for aflatoxin B1, deoxynivalenol, and zearalenone. Animals 2022, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Akula, P. Thermodynamic Approach to Computational Modeling of Chemically Stabilized Soils. Ph.D. Dissertation, Texas A&M University, College Station, TX, USA, 2020. Available online: https://www.proquest.com/dissertations-theses/thermodynamic-approach-computational-modeling/docview/2677477920/se-2 (accessed on 1 May 2020).
- Arunkumar, D.; Krishnani, K.; Kumar, N.; Sarkar, B.; Upadhyay, A.; Sawant, P.; Chadha, N.; Abisha, R. Mitigating abiotic stresses using natural and modified stilbites synergizing with changes in oxidative stress markers in aquaculture. Environ. Geochem. Health 2023, 45, 4565–4581. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef] [PubMed]
- Zabiulla, I.; Malathi, V.; Swamy, H.; Naik, J.; Pineda, L.; Han, Y. The efficacy of a smectite-based mycotoxin binder in reducing aflatoxin B1 toxicity on performance, health and histopathology of broiler chickens. Toxins 2021, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Rivenbark, K.; Gong, J.; Wright, F.A.; Phillips, T.D. Application of edible montmorillonite clays for the adsorption and detoxification of microcystin. ACS Appl. Bio Mater. 2021, 4, 7254–7265. [Google Scholar] [CrossRef]
- Wang, M.; Hearon, S.E.; Phillips, T.D. Development of enterosorbents that can be added to food and water to reduce toxin exposures during disasters. J. Environ. Sci. Health Part B 2019, 54, 514–524. [Google Scholar] [CrossRef]
- Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 2020, 36, 115–126. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef]
- Takalloo, Z.; Nemati, R.; Nikkhah, M.; Sajedi, R.H. Binding efficacy and prebiotic properties of commercial yeast cell walls toward aflatoxins and pathogenic E. coli and Salmonella spp. Anim. Nutr. Feed. Technol. 2023, 23, 205–220. [Google Scholar] [CrossRef]
- Aguilar-Zuniga, K.; Laurie, V.F.; Moore-Carrasco, R.; Ortiz-Villeda, B.; Carrasco-Sánchez, V. Agro-industrial waste products as mycotoxin biosorbents: A review of in vitro and in vivo studies. Food Rev. Int. 2023, 39, 2914–2930. [Google Scholar] [CrossRef]
- Altafini, A.; Armorini, S.; Zaghini, A.; Sardi, L.; Roncada, P. Tissue distribution of ochratoxin A in pigs after administration of two-levels contaminated diets. World Mycotoxin J. 2017, 10, 263–272. [Google Scholar] [CrossRef]
- Sipos, P.; Peles, F.; Brassó, D.L.; Béri, B.; Pusztahelyi, T.; Pócsi, I.; Győri, Z. Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins 2021, 13, 204. [Google Scholar] [CrossRef]
- Hernández-Martínez, S.P.; Delgado-Cedeño, A.; Ramos-Zayas, Y.; Franco-Molina, M.A.; Méndez-Zamora, G.; Marroquín-Cardona, A.G.; Kawas, J.R. Aluminosilicates as a double-edged sword: Adsorption of aflatoxin B1 and sequestration of essential trace minerals in an in vitro gastrointestinal poultry model. Toxins 2023, 15, 519. [Google Scholar] [CrossRef] [PubMed]
- Simona, M.; Camelia, T. Zeolites Applications in Veterinary. In Zeolites New Challenges; IntechOpen: London, UK, 2020; Volume 123. [Google Scholar]
- Fochesato, A.S.; Cristofolini, A.; Poloni, V.L.; Magnoli, A.; Merkis, C.I.; Dogi, C.A.; Cavaglieri, L.R. Culture medium and gastrointestinal environment positively influence the Saccharomyces cerevisiae RC016 cell wall polysaccharide profile and aflatoxin B1 bioadsorption. Lebensm.-Wiss. Technol. 2020, 126, 109306. [Google Scholar] [CrossRef]
- Shigute, T.; Washe, A.P. Reduction of aflatoxin M1 levels during Ethiopian traditional fermented milk (Ergo) production. J. Food Qual. 2018, 2018, 4570238. [Google Scholar] [CrossRef]
- Ahlberg, S.; Randolph, D.; Okoth, S.; Lindahl, J. Aflatoxin Binders in Foods for Human Consumption—Can This be Promoted Safely and Ethically? Toxins 2019, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Basinskiene, L.; Bartkiene, E.; Matusevicius, P. Mycotoxin decontamination aspects in food, feed and renewables using fermentation processes. In Structure And Function of Food Engineering; IntechOpen: London, UK, 2012; pp. 171–204. [Google Scholar]
- Jidung, R.; Kalita, B.; Das, T.; Barman, K.; Phukan, M. Nanosponges an advance technique of drug delivery system: A review. World J. Pharm. Res. 2021, 10, 168–180. [Google Scholar] [CrossRef]
- Joshi, D.C. Nano Sponges: A Novel Approach for Targeted Drug Delivery Systems. J. Drug Deliv. Ther. 2021, 11, 247–252. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Chen, M.; Zhuang, J.; Fang, R.H.; Gao, W.; Zhang, L. Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 2019, 15, 1804994. [Google Scholar] [CrossRef]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. Aaps Pharmscitech 2011, 12, 279–286. [Google Scholar] [CrossRef]
- Djellabi, R.; Rtimi, S. Unleashing photothermocatalysis potential for enhanced pathogenic bacteria inactivation. Chem. Eng. J. 2025, 506, 159976. [Google Scholar] [CrossRef]
- Long, H.; Pu, L.; Li, Y.; Xu, Y.; Xu, W.; Xue, H.; Bi, Y. Effective inactivation of Trichothecium roseum spores in apple juice using contact glow discharge electrolysis: Applications and mechanisms. Food Res. Int. 2025, 202, 115756. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Bach, H. Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials 2022, 12, 4470. [Google Scholar] [CrossRef]
- Parveen, J.; Sultana, T.; Kazmi, A.; Malik, K.; Ullah, A.; Ali, A.; Qayyum, B.; Raja, N.I.; Mashwani, Z.-u.-R.; Rehman, S.U. Phytosynthesized nanoparticles as novel antifungal agent for sustainable agriculture: A mechanistic approach, current advances, and future directions. J. Nanotechnol. 2023, 2023, 8011189. [Google Scholar] [CrossRef]
- Katti, K.; Chanda, N.; Shukla, R.; Zambre, A.; Suibramanian, T.; Kulkarni, R.R.; Kannan, R.; Katti, K.V. Green nanotechnology from cumin phytochemicals: Generation of biocompatible gold nanoparticles. Int. J. Green Nanotechnol. Biomed. 2009, 1, B39–B52. [Google Scholar] [CrossRef]
- Thipe, V.C.; Karikachery, A.R.; Çakılkaya, P.; Farooq, U.; Genedy, H.H.; Kaeokhamloed, N.; Phan, D.-H.; Rezwan, R.; Tezcan, G.; Roger, E. Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J. Drug Deliv. Sci. Technol. 2022, 70, 103256. [Google Scholar] [CrossRef]
- Guru, P.R.; Kar, R.K.; Nayak, A.K.; Mohapatra, S. A comprehensive review on pharmaceutical uses of plant-derived biopolysaccharides. Int. J. Biol. Macromol. 2023, 233, 123454. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Okwute, S.; Adeniyi, B. Phytochemical and volatile components evaluation of antimicrobial root extracts of Dichrostachys cinerea (Sickle bush) (Fabaceae) (L.) Wight & Arn. Dutse J. Pure Appl. Sci. 2024, 10, 316–324. [Google Scholar] [CrossRef]
- Yang, L.; Lei, S.; Xu, W.; Lai, Y.; Zhang, Y.; Wang, Y.; Wang, Z. Rising above: Exploring the therapeutic potential of natural product-based compounds in human cancer treatment. Tradit. Med. Res 2025, 10, 18. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Aboyewa, J.A.; Sibuyi, N.R.S.; Meyer, M.; Oguntibeju, O.O. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants 2021, 10, 1929. [Google Scholar] [CrossRef]
- Ozioma, E.-O.J.; Chinwe, O.A.N. Herbal medicines in African traditional medicine. Herb. Med. 2019, 10, 191–214. [Google Scholar]
- Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black cumin): A promising natural remedy for wide range of illnesses. Evid.-Based Complement. Altern. Med. 2019, 2019, 1528635. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A. Embracing nature’s therapeutic potential: Herbal medicine. Int. J. Multidiscip. Sci. Arts 2023, 2, 117–126. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Li, X. Traditional medicine in India. J. Tradit. Chin. Med. Sci. 2021, 8, S51–S55. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021, 9, 689. [Google Scholar] [CrossRef]
- Singh, H.; Desimone, M.F.; Pandya, S.; Jasani, S.; George, N.; Adnan, M.; Aldarhami, A.; Bazaid, A.S.; Alderhami, S.A. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int. J. Nanomed. 2023, 18, 4727–4750. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Borase, H.P.; Salunke, B.K.; Salunkhe, R.B.; Patil, C.D.; Hallsworth, J.E.; Kim, B.S.; Patil, S.V. Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 2014, 173, 1–29. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Majithia, M.; Barretto, D.A. Biocompatible green-synthesized nanomaterials for therapeutic applications. In Advances in Nano and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2023; pp. 285–367. [Google Scholar]
- Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm. 2021, 19, 100368. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Dlamini, M.L. Application of Some Target Formulations of Active Herbal Plant Components in Reducing Animal Exposure to Mycotoxins and Associated Health Effects; University of Johannesburg: Johannesburg, South Africa, 2015. [Google Scholar]
- Kongolo Kalemba, M.R.; Makhuvele, R.; Njobeh, P.B. Phytochemical screening, antioxidant activity of selected methanolic plant extracts and their detoxification capabilities against AFB(1) toxicity. Heliyon 2024, 10, e24435. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Parveen, B.; Abbas, K.; Iqbal, S.; Altaf, A.A.; Kausar, S. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of Mn(II), Co(II), Ni(II), and Cu(II) complexes containing NO donor bidentate Schiff base. Appl. Organomet. Chem. 2023, 37, e7234. [Google Scholar] [CrossRef]
- Ruangtong, J.; Jiraroj, T.; T-Thienprasert, N.P. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Mater. Today Commun. 2020, 24, 101224. [Google Scholar] [CrossRef]
- Abinaya, M.; Shanthi, S.; Palmy, J.; Al-Ghanim, K.A.; Govindarajan, M.; Vaseeharan, B. Exopolysaccharides-mediated ZnO nanoparticles for the treatment of aquatic diseases in freshwater fish Oreochromis mossambicus. Toxics 2023, 11, 313. [Google Scholar] [CrossRef]
- Puthukkara, P.A.R.; Jose, T.S.; Lal, S.D. Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. J. Environ. Chem. Eng. 2021, 9, 104569. [Google Scholar] [CrossRef]
- Gedikli, H.; Akdogan, A.; Karpuz, O.; Akmese, O.; Kobya, H.N.; Baltaci, C. Aflatoxin detoxification by biosynthesized iron oxide nanoparticles using green and black tea extracts. BioResources 2024, 19, 380. [Google Scholar] [CrossRef]
- Al-Zubaidi, L.A.; Wsain, S.M.; Ibrahim, S.M. Evaluate the Antifungal and detoxification activity of silver nanoparticles prepared with the Curcuma plant extract against Aflatoxin B1 in broiler feed. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 779, p. 012076. [Google Scholar]
- Ngwenya, S.C.; Sithole, N.J.; Mthiyane, D.M.; Jobe, M.C.; Babalola, O.O.; Ayangbenro, A.S.; Mwanza, M.; Onwudiwe, D.C.; Ramachela, K. Effects of Green-Synthesised Copper Oxide–Zinc Oxide Hybrid Nanoparticles on Antifungal Activity and Phytotoxicity of Aflatoxin B1 in Maize (Zea mays L.) Seed Germination. Agronomy 2025, 15, 313. [Google Scholar] [CrossRef]
- Naqvi, S.I.Z.; Kausar, H.; Afzal, A.; Hashim, M.; Mujahid, H.; Javed, M.; Hano, C.; Anjum, S. Antifungal activity of Juglans-regia-mediated silver nanoparticles (AgNPs) against Aspergillus-ochraceus-induced toxicity in in vitro and in vivo settings. J. Funct. Biomater. 2023, 14, 221. [Google Scholar] [CrossRef]
- Devipriya, D.; Roopan, S.M. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater. Sci. Eng. C 2017, 80, 38–44. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Ahmad, A.Q.; Attique, N.; Ali, R.; Abbas, W.; Nadeem, M.; Junaid, M.; Ain, N.U. Green synthesis and characterization of Fe/Mg nanoparticles for their potential applications against aflatoxogenic A. flavus. Results Chem. 2024, 7, 101312. [Google Scholar] [CrossRef]
- Bharose, A.A.; Hajare, S.T.; HP, G.; Soni, M.; Prajapati, K.K.; Singh, S.C.; Upadhye, V. Bacteria-mediated green synthesis of silver nanoparticles and their antifungal potentials against Aspergillus flavus. PLoS ONE 2024, 19, e0297870. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zahir, E.; Shahid, S.M.; Khan, M.N.; Asghar, M.A.; Iqbal, J.; Walker, G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. Lebensm.-Wiss. Technol. 2018, 90, 98–107. [Google Scholar] [CrossRef]
- Yassin, M.A.; Elgorban, A.M.; El-Samawaty, A.E.-R.M.; Almunqedhi, B.M. Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity. Saudi J. Biol. Sci. 2021, 28, 2123–2127. [Google Scholar] [CrossRef]
- Jasim, J.Y.; Al-Taee, S.K. Evaluation of the role of green synthesis silver nanoparticles as adsorbents and protective agents for broilers tissue treated with aflatoxin. Iraqi J. Vet. Sci. 2023, 37, 675–681. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environ. Sci. Pollut. Res. 2021, 28, 1317–1340. [Google Scholar] [CrossRef]
- Sengupta, P.K.; Bhattacharjee, S.; Chakraborty, S.; Bhowmik, S. Encapsulation of pharmaceutically active dietary polyphenols in cyclodextrin-based nanovehicles: Insights from spectroscopic studies. In Design of Nanostructures for Versatile Therapeutic Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 623–645. [Google Scholar]
- Abu Rahim, N.E.A.; Wan Azelee, N.I.; Mohd Fuzi, S.F.Z.; Masngut, N.; Zakaria, Z.A.; Zulkharnain, A.; Illias, R.M.; Abdul Manas, N.H. Crosslinked Cyclodextrin as Potent Composite For Removal of Wastewater Pollutants. Curr. Pollut. Rep. 2023, 9, 680–693. [Google Scholar] [CrossRef]
- Teaima, M.H.; Abdelnaby, F.A.; Fadel, M.; El-Nabarawi, M.A.; Shoueir, K.R. Synthesis of biocompatible and environmentally nanofibrous mats loaded with moxifloxacin as a model drug for biomedical applications. Pharmaceutics 2020, 12, 1029. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.-S.; Chang, S.-L.; Chang, T.-R.; Tan, M.-H.; Zhao, B. Development of cannabidiol full-spectrum oil/2, 6-di-O-methyl-β-cyclodextrin inclusion complex with enhanced water solubility, bioactivity, and thermal stability. J. Mol. Liq. 2022, 347, 118318. [Google Scholar] [CrossRef]
- Arya, P.; Raghav, N. In-vitro studies of Curcumin-β-cyclodextrin inclusion complex as sustained release system. J. Mol. Struct. 2021, 1228, 129774. [Google Scholar] [CrossRef]
- Mai, N.N.S.; Nakai, R.; Kawano, Y.; Hanawa, T. Enhancing the Solubility of Curcumin Using a Solid Dispersion System with Hydroxypropyl-β-Cyclodextrin Prepared by Grinding, Freeze-Drying, and Common Solvent Evaporation Methods. Pharmacy 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.Q.; Pinho, L.A.; Freire, D.O.; Silva, I.C.; Sa-Barreto, L.L.; Cardozo-Filho, L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. Thermal analysis used to guide the production of thymol and Lippia origanoides essential oil inclusion complexes with cyclodextrin. J. Therm. Anal. Calorim. 2019, 137, 543–553. [Google Scholar] [CrossRef]
- Fazylov, S.D.; Nurkenov, O.A.; Nurmaganbetov, Z.S.; Sarsenbekova, A.Z.; Bakirova, R.Y.; Seilkhanov, O.T.; Sviderskiy, A.K.; Syzdykov, A.K.; Mendibayeva, A.Z. Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative. Molecules 2025, 30, 1337. [Google Scholar] [CrossRef] [PubMed]
- Gelaye, Y.; Luo, H. Green-Synthesized Nanomaterials for Aflatoxin Mitigation: A Review. Nanotechnol. Sci. Appl. 2025, 18, 211–223. [Google Scholar] [CrossRef]
- Gjorgieva Ackova, D.; Kadifkova-Panovska, T. Silver nanoparticles: Toxicity and inhibitory effects against aflatoxins. Plant Sci. Today 2025, 12, 1–8. [Google Scholar]
- Kumari, R.; Suman, K.; Karmakar, S.; Mishra, V.; Lakra, S.G.; Saurav, G.K.; Mahto, B.K. Regulation and safety measures for nanotechnology-based agri-products. Front. Genome Ed. 2023, 5, 1200987. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.; Rauscher, H.; Kearns, P.; González, M.; Sintes, J.R. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul. Toxicol. Pharmacol. 2019, 104, 74–83. [Google Scholar] [CrossRef]
- Griffiths, G.; Gruenberg, J.; Marsh, M.; Wohlmann, J.; Jones, A.T.; Parton, R.G. Nanoparticle entry into cells; the cell biology weak link. Adv. Drug Deliv. Rev. 2022, 188, 114403. [Google Scholar] [CrossRef]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, W.; Li, Q.; Wang, Z.; Liu, S. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano 2018, 5, 2482–2499. [Google Scholar] [CrossRef]
Biogenic Extract | Type of Nanoparticle | Study Model | Aflatoxin Inhibition (%) | References |
---|---|---|---|---|
Syzgium cumini (Leaf extract) | AgNPs | In vitro | 100% inhibition of AF production | |
Green tea and black tea (leaf extract) | FeONPs | Peanut puree | 43.7% and 41.2% reduction of AFB1 and AFB2, respectively | [88] |
Curcuma longa L. (rhizome) | AgNPs | In vitro on spiked broiler feed samples | 100% inhibition of mycelia growth | [89] |
Pleurotus ostreatus (mushroom substrate extract) | ZnO-CuONPs | In vitro on potatoes dextrose agar (PDA) | 13.1% inhibitory effect on A. flavus on media with 0.5 ppm concentration | [90] |
Juglans-regia (leaf extract) | AgNPs | In vivo using albino mice | Reduction of kidney and liver injury induced by AFB1 | [91] |
Cissus quadrangularis | CuONPs | In vitro on PDA broth | 83% and 86% inhibition of A. niger at 500 ppm and 1000 ppm respectively. A. flavus 81% and 85% inhibition at 500 ppm and 1000 ppm, respectively | [92] |
Beta vulgaris | ZnONPs | In vitro on Mueller–Hinton agar medium | Growth inhibition | [93] |
Azadirachta indica (leaf extract) | Fe/MgNPs | In vitro by agar well diffusion assay | Growth inhibition of A. flavus | [94] |
Bacillus subtilis (bacteria) | AgNPs | In vitro assay on peanut sample | Reduced AF production by 82.53% | [95] |
Green tea and black tea (leaf extracts) | Ag, Fe, CuNPs | In vitro | AF reduction | [96] |
Penicillium verrucosum (fungi) | AgNPs | In vitro on PDA | Suppressed growth of A. flavus by 50% | [97] |
Pomegranate (peel extract) | AgNPs | In vivo on broiler chicks | Prevention of AF-induced pathologies. Reduced AF concentration from 1.91 ppm to 1.85 ppm | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awafong, P.M.; Okechukwu, V.O.; Fagbohun, T.R.; Adelusi, O.A.; Adebo, O.A.; Njobeh, P.B.; Mthombeni, J.Q. Greener Solutions in Aflatoxin Management: Transitioning from Conventional Binders to Green Nanotechnology. Nanomaterials 2025, 15, 1604. https://doi.org/10.3390/nano15211604
Awafong PM, Okechukwu VO, Fagbohun TR, Adelusi OA, Adebo OA, Njobeh PB, Mthombeni JQ. Greener Solutions in Aflatoxin Management: Transitioning from Conventional Binders to Green Nanotechnology. Nanomaterials. 2025; 15(21):1604. https://doi.org/10.3390/nano15211604
Chicago/Turabian StyleAwafong, Patience M., Viola O. Okechukwu, Temitope R. Fagbohun, Oluwasola A. Adelusi, Oluwafemi A. Adebo, Patrick B. Njobeh, and Julian Q. Mthombeni. 2025. "Greener Solutions in Aflatoxin Management: Transitioning from Conventional Binders to Green Nanotechnology" Nanomaterials 15, no. 21: 1604. https://doi.org/10.3390/nano15211604
APA StyleAwafong, P. M., Okechukwu, V. O., Fagbohun, T. R., Adelusi, O. A., Adebo, O. A., Njobeh, P. B., & Mthombeni, J. Q. (2025). Greener Solutions in Aflatoxin Management: Transitioning from Conventional Binders to Green Nanotechnology. Nanomaterials, 15(21), 1604. https://doi.org/10.3390/nano15211604