Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of CuBi2O4 Microrods
2.3. Synthesis of Ag3PO4/CuBi2O4 Composites
2.4. Characterization
2.5. Photoelectricity Experiments
2.6. Photocatalytic Experiments
3. Results
3.1. Structural and Morphological Characterization
3.2. Photocatalytic Activity of the Ag3PO4/CuBi2O4 Photocatalyst
3.3. Insights into Z-Scheme Heterojunction Formation
3.4. Photophysical and Electrochemical Properties
3.5. Mechanism of Light-Driven O2 Evolution Coupled with Cr(VI) Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, L.; Cheng, T.; Zhu, Y.; Wang, Y.; Gao, Y.; Bi, J. Lanthanide-Porphyrin MOF as a Multifunctional Platform for Detection and Integrated Elimination of Cr(VI) and Ciprofloxacin. Inorg. Chem. 2025, 64, 1983–1993. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.H.; Han, X.K.; Ma, X.X.; Zhang, L.; Zhu, H.J.; Kong, X.J.; Li, X.; Yan, H.; Zhou, H.W.; et al. Enhancing Photoreduction of Cr(VI) through a Multivalent Manganese(II)-Organic Framework Incorporating Anthracene Moieties. Inorg. Chem. 2024, 63, 16897–16907. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, P.; Zhang, T.; Zhu, Y.; Qiu, F. Fabrication of Recyclable Magnetic Double-Base Aerogel with Waste Bioresource Bagasse as the Source of Fiber for the Enhanced Removal of Chromium Ions from Aqueous Solution. Food Bioprocess. 2020, 119, 257–267. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Dong, J.; Zhang, Y.; Cao, S.; Wang, K.; Wang, B.; She, Y.; Xia, J.; Li, H. In Situ Construction of CuTCPP/Bi4O5Br2 Hybrids for Improved Photocatalytic CO2 and Cr(VI) Reduction. Inorg. Chem. 2024, 63, 9753–9762. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Jayan, H.; Cai, J.; El-Seedi, H.R.; Guo, Z.; Zou, X. Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction. Foods 2023, 12, 2673. [Google Scholar] [CrossRef]
- Qing, Y.; Gao, W.; Long, Y.; Kang, Y.; Xu, C. Functionalized Titanium-Based MOF for Cr(VI) Removal from Wastewater. Inorg. Chem. 2023, 62, 6909–6919. [Google Scholar] [CrossRef]
- Wang, J.; Ahmad, W.; Hassan, M.M.; Zareef, M.; Viswadevarayalu, A.; Arslan, M.; Li, H.; Chen, Q. Landing Microextraction Sediment Phase onto Surface Enhanced Raman Scattering to Enhance Sensitivity and Selectivity for Chromium Speciation in Food and Environmental Samples. Food Chem. 2020, 323, 126812. [Google Scholar] [CrossRef]
- Buccato, D.G.; Ullah, H.; De Lellis, L.F.; Morone, M.V.; Larsen, D.S.; Di Minno, A.; Cordara, M.; Piccinocchi, R.; Baldi, A.; Greco, A.; et al. Efficacy and Tolerability of a Food Supplement Based on Zea mays L., Gymnema sylvestre (Retz.) R. br. ex Sm, Zinc and Chromium for the Maintenance of Normal Carbohydrate Metabolism: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024, 16, 2459. [Google Scholar] [CrossRef]
- Han, S.; Xie, H.; Zhang, L.; Wang, X.; Zhong, Y.; Shen, Y.; Wang, H.; Hao, C. High-Performance Polyethylenimine-Functionalized Lignin/Silica Porous Composite Microsphere for the Removal of Hexavalent Chromium, Phosphate, and Congo Red from Aqueous Solutions. Ind. Crop. Prod. 2023, 194, 116289. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, Z.; He, L.; Han, L.; Li, B.; Xu, Y. Polyoxometalate Functionalized Cyclic Trinuclear Copper Compounds for Bifunctional Electrochemical Detection and Photocatalytic Reduction of Cr(VI). Inorg. Chem. 2024, 63, 12564–12571. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Huang, G.; Pu, H.; Li, Q.; Lu, C.; Tan, L.; Dong, L.; Zhou, C. CdBi2S4-Decorated Aminated Polyacrylonitrile Nanofiber for Photocatalytic Treatment of Cr(VI) and Tetracycline Wastewater. Inorg. Chem. 2024, 63, 5611–5622. [Google Scholar] [CrossRef]
- Ghaedrahmati, L.; Jafarzadeh, M. One-Pot Synthesis of a CoSx@Ag2S/CdS Z-Scheme Photocatalyst for RhB Photodegradation and Cr(VI) Photoreduction. Langmuir 2025, 41, 15461–15473. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Yan, W.; Xie, T.; Chen, Y.; Wei, Y. Optimizing Electronic Density at Active W Sites for Boosting Photocatalytic H2 Evolution. Inorg. Chem. 2024, 63, 4279–4287. [Google Scholar] [CrossRef] [PubMed]
- Costantino, F.; Kamat, P.V. Do sacrificial donors donate H2 in photocatalysis? ACS Energy Lett. 2021, 7, 242–246. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Thomas, A.; Janáky, C. Photocatalytic activity of inorganic semiconductor surfaces: Myths, hype, and reality. J. Phys. Chem. Lett. 2015, 6, 139–147. [Google Scholar] [CrossRef]
- Weng, B.; Zhang, M.; Lin, Y.; Yang, J.; Lv, J.; Han, N.; Xie, J.; Jia, H.; Su, B.-L.; Roeffaers, M.; et al. Photo-assisted technologies for environmental remediation. Nat. Rev. Clean Technol. 2025, 1, 201–215. [Google Scholar] [CrossRef]
- Santarcangelo, C.; Baldi, A.; Ciampaglia, R.; Dacrema, M.; Di Minno, A.; Pizzamiglio, V.; Daglia, M. Long-Aged Parmigiano Reggiano PDO: Trace Element Determination Targeted to Health. Foods 2022, 11, 172. [Google Scholar] [CrossRef]
- Ahmed, S.; Razzaq, I.; Sardar, R.; Ahmad, M.N.; Aziz, T.; Shami, A.; Lin, L. Food Security through Triacontanol Priming: Mitigating Chromium Stress and Boosting Yield in Raphanus sativus L. Ital. J. Food Sci. 2025, 37, 276–294. [Google Scholar] [CrossRef]
- Zarekarizi, F.; Ghasempour, H.; Habibi, B.; Morsali, A.; Ramazani, A. Development of a Novel Mixed-Metal-Organic Framework: An Innovative Photocatalyst for Simultaneous Cr(VI) Reduction and Phenol Degradation. Inorg. Chem. 2024, 63, 24363–24373. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wu, X.; Zhao, Y.; Li, R.; Li, C. Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting. J. Am. Chem. Soc. 2025, 147, 3641–3649. [Google Scholar] [CrossRef]
- Song, W.; Chong, K.C.; Qi, G.; Xiao, Y.; Chen, G.; Li, B.; Tang, Y.; Zhang, X.; Yao, Y.; Lin, Z.; et al. Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2024, 146, 3303–3314. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Dong, C.L.; Huang, Y.C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-Doped Nitrogen-Deficient Carbon Nitride-Based Z-Scheme Heterostructures for Photocatalytic Overall Water Splitting. Nat. Energy 2021, 6, 388–397. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, X.; Shen, J.; Zhang, Z.; Wang, D.; Lin, J.; Wu, J.C.S.; Fu, X.; Wang, X.; Li, C. Direct and Indirect Z-Scheme Heterostructure-Coupled Photosystem Enabling Cooperation of CO2 Reduction and H2O Oxidation. Nat. Commun. 2020, 11, 3043. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.M.; Zhang, X.; Wang, L.; Shen, J.; Zhou, M.; Shen, L. Data-Driven Discovery of Transition Metal Dichalcogenide-Based Z-Scheme Photocatalytic Heterostructures. ACS Catal. 2023, 13, 9936–9945. [Google Scholar] [CrossRef]
- Li, N.; Shi, M.; Sun, G.; Wu, M.; Li, Q.; Shen, W.; Ma, J. Z-Scheme CdIn2S4/Bi2WO6 Heterojunction for High Piezo-Photo Synergetic Performance. Inorg. Chem. 2023, 62, 8261–8270. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhu, Z.; Tian, N.; Zhang, Y.; Huang, H. Hydrogen Bonds and In Situ Photoinduced Metallic Bi0/Ni0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202408862. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Lin, Y.; Zhang, X.; Yu, Y.; Zhang, R. Z-Scheme Cu2(OH)3F Nanosheets-Decorated 3D Bi2WO6 Heterojunction with an Intimate Hetero-Surface Contact through a Hydrogen Bond for Enhanced Photoinduced Charge Separation and Transfer. Chem. Eng. J. 2022, 427, 131704. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, X.; Chen, L.; Xiong, Y.; Xu, H. Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. Angew. Chem. Int. Ed. 2018, 5, 3454–3458. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y.; et al. Van der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer p-n Junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [CrossRef]
- Canossa, S.; Wuttke, S. Functionalization chemistry of porous materials. Adv. Funct. Mater. 2020, 30, 2003875. [Google Scholar] [CrossRef]
- Zellner, R. Biological responses to nanoscale particles Beilstein. J. Nanotechnol. 2015, 6, 380–382. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, S.; Puente-Santiago, A.R.; Wu, C.; Weng, B. Zinc mediated electronic structure of CoP toward photocatalytic H2 evolution. Appl. Catal. B Environ. Energy 2025, 367, 125098. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, T.; He, D.; Chen, P.; Liu, H.; Lv, H.; Wu, H.; Su, D.; Pang, H.; Wang, C. Efficient Photocatalytic Desulfurization in Air through Improved Photogenerated Carriers Separation in MIL-101/Carbon Dots-g-C3N4 Nanocomposites. Angew. Chem. 2024, 136, e202408989. [Google Scholar] [CrossRef]
- Xing, C.; Yu, G.; Zhou, J.; Liu, Q.; Chen, T.; Liu, H.; Li, X. Solar Energy-Driven Upcycling of Plastic Waste on Direct Z-Scheme Heterostructure of V-Substituted Phosphomolybdic Acid/g-C3N4 Nanosheets. Appl. Catal. B Environ. 2022, 315, 121496. [Google Scholar] [CrossRef]
- Yue, H.; Guo, Z.; Zhou, Z.; Zhang, X.; Guo, W.; Zhen, S.; Wang, P.; Wang, K.; Yuan, W. S-S Bond Strategy at Sulfide Heterointerface: Reversing Charge Transfer and Constructing Hydrogen Spillover for Boosted Hydrogen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202409465. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Interfacial Chemical Bond and Oxygen Vacancy-Enhanced In2O3/CdSe-DETA S-Scheme Heterojunction for Photocatalytic CO2 Conversion. Adv. Funct. Mater. 2023, 33, 2214470. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Wang, W.; Li, Y.; He, H.; Deng, L.; Zhang, Y.; Huang, J.; Zhao, N.; Yu, G.; et al. Rational Design of Defect Metal Oxide/Covalent Organic Frameworks Z-Scheme Heterojunction for Photoreduction CO2 to CO. Appl. Catal. B Environ. 2023, 327, 122419. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, H.; Liu, L.; Chen, F.; Tian, N.; Zhang, Y.; Yu, H. Chemically Bonded α-Fe2O3/Bi4MO8Cl Dot-on-Plate Z-Scheme Junction with Strong Internal Electric Field for Selective Photo-Oxidation of Aromatic Alcohols. Angew. Chem. Int. Ed. 2022, 61, e202203519. [Google Scholar] [CrossRef]
- Ono, L.K.; Park, N.G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells—Towards Commercialization. ACS Energy Lett. 2017, 2, 1749–1751. [Google Scholar] [CrossRef]
- Zheng, K.; Pullerits, T. Two dimensions are better for perovskites. J. Phys. Chem. Lett. 2019, 10, 5881–5885. [Google Scholar] [CrossRef] [PubMed]
- Seigneur, N.; Mayer, K.U.; Steefel, C.I. Reactive transport in evolving porous media. Rev. Mineral. Geochem. 2019, 85, 197–238. [Google Scholar] [CrossRef]
- Lei, J.; Yang, H.; Weng, B.; Zheng, Y.M.; Chen, S.; Menezes, P.W.; Meng, S. Optimization of adsorption sites for selective hydrobenzoin and syngas production in a single photoredox cycle. Adv. Energy Mater. 2025, 15, 2500950. [Google Scholar] [CrossRef]
- Xia, X.; Pan, J.H.; Pan, X.; Hu, L.; Yao, J.; Ding, Y.; Wang, D.; Ye, J.; Dai, S. Photochemical conversion and storage of solar energy. ACS Energy Lett. 2019, 4, 405–410. [Google Scholar] [CrossRef]
- Li, S.; Meng, S.; Zhang, H.; Puente-Santiago, A.R.; Wang, Z.; Chen, S.; Muñoz-Batista, M.J.; Zheng, Y.M.; Weng, B. Tailoring Redox Active Sites with Dual-Interfacial Electric Fields for Concurrent Photocatalytic Biomass Valorization and H2 Production. Adv. Funct. Mater. 2025, e13682. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, Y.; Xue, Q.; Zhang, C.; Bao, T.; Zhang, X.; Yuan, L.; Qiao, S.; Song, L.; Zou, J.; et al. MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. 2024, 63, e202409799. [Google Scholar] [CrossRef]
- He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Rapid Charge Transfer Endowed by Interfacial Ni-O Bonding in S-Scheme Heterojunction for Efficient Photocatalytic H2 and Imine Production. Angew. Chem. Int. Ed. 2023, 62, e202313172. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Chen, W.J.; Jiang, H. Facile Synthesis of Ag/Ag3PO4/AMB Composite with Improved Photocatalytic Performance. Chem. Eng. J. 2017, 308, 889–896. [Google Scholar] [CrossRef]
- Gudipati, N.S.; Ramesh, A.; Vanjari, S.; Duvvuri, S.; Challapalli, S. MnO2 and CuBi2O4 Hybrid Microstructures for Efficient Nonenzymatic Hydroxylamine Detection. J. Chem. Sci. 2023, 135, 101. [Google Scholar] [CrossRef]
- Tortorelli, M.; Chakarova, K.; Lisi, L.; Hadjiivanov, K. Disproportionation of Associated Cu2+ Sites in Cu-ZSM-5 to Cu+ and Cu3+ and FTIR Detection of Cu3+(NO)x (x = 1,2) Species. J. Catal. 2014, 309, 376–385. [Google Scholar] [CrossRef]
- Liu, H.S.; Chin, T.S.; Yung, S.W. FTIR and XPS Studies of Low-Melting PbO-ZnO-P2O2 Glasses. Mater. Chem. Phys. 1997, 50, 1–10. [Google Scholar] [CrossRef]
- Sang, Y.; Song, G.; Gao, Z.; Zhang, X.; Wang, T.; Li, Y.; Zhang, L.; Guo, L. Sea Urchin-Like CuO Particles Prepared Using Cu3(PO4)2 Flowers as Precursor for High-Performance Ethanol Sensing. Nanotechnology 2020, 31, 165504. [Google Scholar] [CrossRef]
- Hu, J.; Li, B.; Li, X.; Yang, T.; Yang, X.; Qu, J.; Yang, H.; Lin, Z. Lattice Match-Enabled Covalent Heterointerfaces with Built-in Electric Field for Efficient Hydrogen Peroxide Photosynthesis. Adv. Mater. 2024, 36, 2412070. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem. Rev. 2020, 120, 2123–2170. [Google Scholar] [CrossRef]
- Pang, F.; Liu, X.; He, M.; Ge, J. Ag3PO4 Colloidal Nanocrystal Clusters with Controllable Shape and Superior Photocatalytic Activity. Nano Res. 2015, 8, 106–116. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, L.; Lu, H.; Li, Y.; Hu, C.; Yu, H. One-Pot Pyridine-Assisted Synthesis of Visible-Light-Driven Photocatalyst Ag/Ag3PO4. Appl. Catal. B Environ. 2012, 115, 245–252. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Wang, Z.; Li, G. Pivotal Role of Water Vapor–Mediated Defect Engineering on SrTiO3 Nanofiber Toward Efficient Photocatalytic Water Splitting. Mater. Today Energy 2024, 44, 101622. [Google Scholar] [CrossRef]
- Lv, H.; Suo, Z.; Zhang, F.; Wan, B.; Zhou, C.; Ng, X.; Wang, G.; Chen, Y.; Liu, Y. Electronic Structure Engineering and a Cascade Electron Transfer Channel in a Ni2P/1T-WS2/ZnIn2S4 Ternary Heterojunction for Enhanced Photocatalytic Hydrogen Evolution: Construction, Kinetics, and Mechanistic Insights. Inorg. Chem. Front. 2025, 12, 4223–4236. [Google Scholar] [CrossRef]
- Huang, K.; Feng, B.; Wen, X.; Hao, L.; Xu, D.; Liang, G.; Shen, R.; Li, X. Effective Photocatalytic Hydrogen Evolution by Ti3C2-Modified CdS Synergized with N-Doped C-Coated Cu2O in S-Scheme Heterojunctions. Chin. J. Struct. Chem. 2023, 42, 100204. [Google Scholar] [CrossRef]
- Iatsunskyi, I.; Gottardi, G.; Micheli, V.; Canteri, R.; Coy, E.; Bechelany, M. Atomic Layer Deposition of Palladium Coated TiO2/Si Nanopillars: ToF-SIMS, AES and XPS Characterization Study. Appl. Surf. Sci. 2021, 542, 148603. [Google Scholar] [CrossRef]
- Maslakov, K.I.; Teterin, Y.A.; Stefanovsky, S.V.; Kalmykov, S.N.; Teterin, A.Y.; Ivanov, K.E. XPS Study of Uranium-Containing Sodium-Aluminum-Iron-Phosphate Glasses. J. Alloys Compd. 2017, 712, 36–43. [Google Scholar] [CrossRef]
- Abouelnaga, A.M. Enhanced UV–Visible Optical Response of Cu2+-Doped ZnAl2O4 Spinel Thin Films. J. Solid State Sci. Technol. 2025, 14, 083006. [Google Scholar] [CrossRef]
- Gopannagari, M.; Reddy, K.A.J.; Inae, S.; Bae, H.S.; Lee, J.; Woo, T.G.; Rangappa, A.P.; Kumar, D.P.; Reddy, D.A.; Kim, T.K. High-Performance Silver-Doped Porous CuBi2O4 Photocathode Integrated with NiO Hole-Selective Layer for Improved Photoelectrochemical Water Splitting. Adv. Sustain. Syst. 2023, 7, 2300085. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, H.; Yang, H.; Zhu, L.; Ding, C.; Zhang, G.; Bi, J.; Yan, S.; Liu, G.; Hou, H. UV-Vis-NIR-Light-Driven Ag2O/Ag2S/CuBi2O4 Double Z-Scheme Configuration for Enhanced Photocatalytic Applications. Mater. Sci. Semicond. Process. 2021, 126, 105668. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Xu, X.; Qu, Y.; Ding, X.; Chen, H. Surface Plasmon Resonance-Induced Visible-Light Photocatalytic Performance of Silver/Silver Molybdate Composites. Chin. J. Catal. 2017, 38, 260–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Su, Z.; Weng, B. Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction. Nanomaterials 2025, 15, 1592. https://doi.org/10.3390/nano15201592
Wei Y, Su Z, Weng B. Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction. Nanomaterials. 2025; 15(20):1592. https://doi.org/10.3390/nano15201592
Chicago/Turabian StyleWei, Yingcong, Zeyu Su, and Bo Weng. 2025. "Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction" Nanomaterials 15, no. 20: 1592. https://doi.org/10.3390/nano15201592
APA StyleWei, Y., Su, Z., & Weng, B. (2025). Interfacial P-O-Cu Bonds Drive Rapid Z-Scheme Charge Transfer for Efficient Photocatalytic O2 Evolution Synchronized with Cr(VI) Reduction. Nanomaterials, 15(20), 1592. https://doi.org/10.3390/nano15201592