Irreversible Plastic Flows and Sedimentary Ecological Entrapment: A Critical Review of Legacy Risks and Governance Strategies for Planetary Health
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Analytical Scope and Indicator Synthesis
2.4. Visualization and Data Sourcing
3. Plastic Types and Physicochemical Properties
Physicochemical Property | Scientific Description | Ecological Function and Implications | References |
---|---|---|---|
Durability | High molecular stability; resists thermal, photolytic, and microbial degradation. | Enables long-term persistence and accumulation in soils, sediments, and aquatic environments. | [21,57,58,62,77,78] |
Hydrophobicity | Non-polar nature facilitates sorption of hydrophobic organic pollutants and limits water solubility. | Enhances environmental mobility and interaction with co-contaminants, promoting bioaccumulation. | [67,68,69,79,80,81] |
Density and buoyancy | Density determines floating or sinking behavior in aquatic systems, affecting vertical distribution. | Influences exposure risk for pelagic versus benthic organisms; contributes to sediment entrapment. | [40,42,57,82,83,84] |
Chemical additives | Includes plasticizers, flame retardants, and endocrine disruptors such as BPA and PFAS. | Leached chemicals cause endocrine disruption, reproductive toxicity, and bioaccumulation in wildlife. | [5,23,34,62,75,76] |
Adsorptive capacity | Large surface area and surface chemistry enable adsorption of POPs, antibiotics, and metals. | Facilitates pollutant transfer across trophic levels; increases ecological toxicity and bioavailability. | [30,63,67,70,71,72,85] |
Surface area-to-volume ratio | Fragmentation increases surface area, enhancing reactivity and cellular interactions. | Promotes oxidative stress, inflammatory responses, and cellular disruption in exposed biota. | [44,46,50,51,52,53,86] |
4. Transport Pathways of Plastics Across Freshwater and Marine Ecosystems
Transport Modality | Environmental Medium | Mechanisms and Examples | Ecological Impacts | References |
---|---|---|---|---|
Physical transport | Atmosphere, hydrosphere, lithosphere | Wind uplift; rainfall and surface runoff; ocean currents; cryospheric drift | Cross-boundary dispersal; long-range transport; deposition in remote and pristine regions | [43,57,58,62,99,100] |
Biological transport | Aquatic and terrestrial biota | Ingestion; trophic transfer; fecal pellet transport; placental translocation | Bioaccumulation; physiological stress; trophic web disruption | [22,58,62,84,91,96] |
Chemical transformation | UV exposure, oxidative, microbial environments | Photodegradation; thermo-oxidation; enzymatic depolymerization (e.g., PETase) | Generation of micro- and nanoplastics; enhanced pollutant sorption and bioavailability | [67,68,69,70,71,72,101,102,103] |
5. Sediments as Ecological Entrapment Zones for Plastics
Final Sink | Entry Pathways | Persistence Mechanisms | System-Level Impacts | References |
---|---|---|---|---|
Atmosphere | Wind transport, urban emissions, synthetic textiles shedding | Global dispersal, ice trapping, dry and wet deposition | Respiratory health risks, contamination of remote and pristine areas | [43,58,62,99,114] |
Marine sediments | Sinking via biofouling, marine snow, particle aggregation | Anaerobic conditions, deep burial, long-term entrapment | Disruption of benthic fauna, alteration of carbon and nutrient cycling | [4,41,57,67,68,82] |
Agricultural soils | Plastic mulch application, sludge amendment, irrigation runoff | Soil embedding, bioturbation, slow abiotic and microbial degradation | Soil fertility decline, microbial community shifts, crop uptake and food chain entry | [35,58,84,115,116] |
Biological tissues | Ingestion and inhalation via air, water, and food | Cellular uptake, translocation across organs, systemic circulation | Hormonal disruptions, inflammatory responses, intergenerational health effects | [22,50,51,52,86,96] |
Stratigraphic layers | Sediment burial, fossilization processes | Geological preservation, technofossil formation | Long-term environmental archives, markers of the Anthropocene epoch | [4,70,72,117,118] |
6. Ecological Legacies of Sedimentary Plastics
6.1. Biological and Biogeochemical Feedbacks
6.2. Legacy Effects and Re-Exposure Risks
7. Monitoring Frameworks and Methodological Gaps
7.1. Empirical Gaps in Field-Based and Long-Term Observations
7.2. Methodological Limitations in Sediment Monitoring
7.3. Regional Governance Disparities and Capacity Gaps
7.4. Strategic Integration of Monitoring and Governance
8. Transdisciplinary Strategies for Plastic Governance and Systemic Integration
9. Conclusions
Policy Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuchs, Y.; Scherbaum, S.; Huber, R.; Rüther, N.; Hartlieb, A. Removing plastic waste from rivers: A prototype-scale experimental study on a novel river-cleaning concept. Water 2024, 16, 248. [Google Scholar] [CrossRef]
- Honingh, D.; van Emmerik, T.; Uijttewaal, W.; Kardhana, H.; Hoes, O.; van de Giesen, N. Urban river water level increase through plastic waste accumulation at a rack structure. Front. Earth Sci. 2020, 8, 28. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. 2021. Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 18 May 2025).
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recy. 2019, 151, 104459. [Google Scholar] [CrossRef]
- Richon, C.; Kvale, K.; Lebreton, L.; Egger, M. Legacy oceanic plastic pollution must be addressed to mitigate possible long-term ecological impacts. Micropl. Nanopl. 2023, 3, 25. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution: Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- World Wide Fund for Nature (WWF). Impacts of Plastic Pollution in the Ocean on Marine Species, Biodiversity, and Ecosystems; WWF International: Gland, Switzerland, 2022; Available online: https://files.worldwildlife.org/WWF-Impacts_of_plastic_pollution_in_the_ocean_on_marine_species__biodiversity_and_ecosystems.pdf (accessed on 18 June 2025).
- Tatsii, D.; Bucci, S.; Bhowmick, T.; Guettler, J.; Bakels, L.; Bagheri, G.; Stohl, A. Shape matters: Long-range transport of microplastic fibers in the atmosphere. Environ. Sci. Technol. 2024, 58, 671–682. [Google Scholar] [CrossRef]
- Dewika, M.; Markandan, K.; Ruwaida, J.N.; Sara, Y.Y.; Deb, A.; Irfan, N.A.; Khalid, M. Integrating the quintuple helix approach into atmospheric microplastics management policies for planetary health preservation. Sci. Total Environ. 2024, 954, 176063. [Google Scholar] [CrossRef]
- Rana, S.M.M.; Scott, D.T.; Hester, E.T. Effects of in-stream structures and channel flow rate variation on transient storage. J. Hydrol. 2017, 548, 157–169. [Google Scholar] [CrossRef]
- Shih, S.-S.; Liu, C.-H.; Ning, J.-H. In-river weir effects on the alteration of flow regime and regarding structural stream habitat. J. Hydrol. 2022, 615, 128670. [Google Scholar] [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River hydrology, flow alteration, and environmental flow. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 67–89. [Google Scholar] [CrossRef]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef]
- Galvão, L.A.C.; Finkelman, J.; Henao, S. (Eds.) Environmental and Social Determinants of Health; Pan-American Health Organization: Washington, DC, USA, 2016. [Google Scholar]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham, D.; Das, S.; et al. Impacts of plastic pollution on ecosystem services, Sustainable Development Goals, and the need to focus on circular economy and policy interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 159, 107019. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; et al. The Minderoo-Monaco commission on plastics and human health. Ann. Glob. Health 2023, 89, 23. [Google Scholar] [CrossRef]
- Aves, A.R.; Revell, L.E.; Gaw, S.; Ruffell, H.; Schuddeboom, A.; Wotherspoon, N.E.; LaRue, M.; McDonald, A.J. First evidence of microplastics in Antarctic snow. Cryosphere 2022, 16, 2127–2145. [Google Scholar] [CrossRef]
- Our World in Data, CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 18 June 2025).
- GRID; Arendal. Climate Visuals and Environmental Graphics. 2021. Available online: https://www.grida.no (accessed on 18 June 2025).
- OECD. Global Plastics Outlook: Policy Scenarios to 2060. 2022. Available online: https://www.oecd.org/environment/plastics/policy-scenarios-to-2060.htm (accessed on 18 July 2025).
- Green Post Korea (GPK). Korea Exceeds 2023 GHG Reduction Targets with 624.2 MtCO2e. 2023. Available online: https://www.greenpostkorea.co.kr/news/articleView.html?idxno=132487 (accessed on 18 August 2025).
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Granados-Sánchez, R.R.; Sedeño-Díaz, J.E.; López-López, E. Microplastic pollution and associated trace metals in freshwater ecosystems within protected natural areas: The case of a biosphere reserve in Mexico. Front. Environ. Sci. 2024, 12, 1441340. [Google Scholar] [CrossRef]
- Ghosh, K.; Jones, B.H. Roadmap to biodegradable plastics—Current state and research needs. ACS Sustain. Chem. Eng. 2021, 9, 6170–6187. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Liang, X.; Lu, S.; Ren, J.; Zhang, Y.; Han, Z.; Gao, B.; Sun, K. Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Res. 2024, 3, 37. [Google Scholar] [CrossRef]
- Bexeitova, K.; Baimenov, A.; Varol, E.A.; Kudaibergenov, K.; Zhantikeyev, U.; Sailaukhanuly, Y.; Toshtay, K.; Tauanov, Z.; Azat, S.; Berndtsson, R. Microplastics in freshwater systems: A review of classification, sources, and environmental impacts. Chem. Eng. J. Adv. 2024, 20, 100649. [Google Scholar] [CrossRef]
- Guo, M.; Noori, R.; Abolfathi, S. Microplastics in freshwater systems: Dynamic behaviour and transport processes. Resour. Conserv. Recy. 2024, 205, 107578. [Google Scholar] [CrossRef]
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Besseling, E.; Shim, W.J. Nanoplastics in the aquatic environment: Critical review. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 325–340. [Google Scholar] [CrossRef]
- Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio 2021, 11, 954–966. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Claessens, M.; Vandegehuchte, M.B.; Janssen, C.R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 2015, 199, 10–17. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 2017, 7, 11452. [Google Scholar] [CrossRef]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev Environ. Sci. Biotechnol 2022, 21, 169–203. [Google Scholar] [CrossRef]
- Shukla, S.; Khanna, S.; Khanna, K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol. Rep. 2025, 14, 101844. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Plastics and micro/nano-plastics (MNPs) in the environment: Occurrence, impact, and toxicity. Int. J. Environ. Res. Public Health 2023, 20, 6667. [Google Scholar] [CrossRef]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef]
- Llorca, M.; Farré, M. Current insights into potential effects of micro-nanoplastics on human health by in-vitro tests. Front. Toxicol. 2021, 3, 752140. [Google Scholar] [CrossRef]
- Stapleton, P.A. Toxicological considerations of nano-sized plastics. AIMS Environ. Sci. 2019, 6, 367–378. [Google Scholar] [CrossRef]
- Ivleva, N.P. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; Álvarez-Méndez, S.J.; González-Sálamo, J.; Socas-Hernández, C.; Díaz-Peña, F.J.; Hernández-Sánchez, C.; Hernández-Borges, J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environ. Pollut. 2023, 317, 120788. [Google Scholar] [CrossRef]
- Pinto da Costa, J.; Reis, V.; Paço, A.; Costa, M.; Duarte, A.C.; Rocha-Santos, T. Micro(nano)plastics—Analytical challenges towards risk evaluation. TrAC Trends Anal. Chem. 2019, 111, 173–184. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S.; Kim, M.K.; Yu, E.S.; Ryu, Y.S. Challenges and recent analytical advances in micro/nanoplastic detection. Anal. Chem. 2024, 96, 8846–8854. [Google Scholar] [CrossRef]
- Ali, S.S.; Alsharbaty, M.H.M.; Al-Tohamy, R.; Schagerl, M.; Al-Zahrani, M.; Kornaros, M.; Sun, J. Microplastics as persistent and vectors of other threats in the marine environment: Toxicological impacts, management and strategical roadmap to end plastic pollution. Environ. Chem. Ecotoxicol. 2025, 7, 229–251. [Google Scholar] [CrossRef]
- Habumugisha, T.; Zhang, Z.; Uwizewe, C.; Yan, C.; Ndayishimiye, J.C.; Rehman, A.; Zhang, X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. Ecotoxicol. Environ. Saf. 2024, 278, 116426. [Google Scholar] [CrossRef]
- Aralappanavar, V.K.; Mukhopadhyay, R.; Yu, Y.; Liu, J.; Bhatnagar, A.; Praveena, S.M.; Li, Y.; Paller, M.; Adyel, T.M.; Rinklebe, J.; et al. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling—A review. Sci. Total Environ. 2024, 924, 171435. [Google Scholar] [CrossRef]
- Sutkar, P.R.; Gadewar, R.D.; Dhulap, V.P. Recent trends in degradation of microplastics in the environment: A state-of-the-art review. J. Hazard. Mater. Adv. 2023, 11, 100343. [Google Scholar] [CrossRef]
- Dimassi, S.N.; Hahladakis, J.N.; Yahia, M.N.D.; Ahmad, M.I.; Sayadi, S.; Al-Ghouti, M.A. Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arab. J. Chem. 2022, 15, 104262. [Google Scholar] [CrossRef]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemical components: The need for urgent preventive measures. Environ. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Okoye, C.O.; Addey, C.I.; Oderinde, O.; Okoro, J.O.; Uwamungu, J.Y.; Ikechukwu, C.K.; Okeke, E.S.; Ejeromedoghene, O.; Odii, E.C. Toxic chemicals and persistent organic pollutants associated with micro- and nanoplastics pollution. Chem. Eng. J. Adv. 2022, 11, 100310. [Google Scholar] [CrossRef]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.S.-Y.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation Camb 2024, 5, 100612. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Sha, W.; Wang, Y.; Hao, H.; Dou, Y.; Li, Y. Sorption behavior and mechanisms of organic contaminants to nano and microplastics. Molecules 2020, 25, 1827. [Google Scholar] [CrossRef]
- Song, X.; Zhuang, W.; Cui, H.; Liu, M.; Gao, T.; Li, A.; Gao, Z. Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. Sci. Total Environ. 2022, 838, 156068. [Google Scholar] [CrossRef]
- Rai, P.K.; Sonne, C.; Brown, R.J.C.; Younis, S.A.; Kim, K.H. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. J. Hazard. Mater. 2022, 427, 127903. [Google Scholar] [CrossRef]
- Agboola, O.D.; Benson, N.U. Physisorption and chemisorption mechanisms influencing micro(nano)plastics–organic chemical contaminants interactions: A review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Tang, K.H.D. Microplastics and antibiotics in aquatic environments: A review of their interactions and ecotoxicological implications. Trop. Aqua. Soil Pollut. 2024, 4, 60–78. [Google Scholar] [CrossRef]
- Ateia, M.; Ersan, G.; Alalm, M.G.; Boffito, D.C.; Karanfil, T. Emerging investigator series: Microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems—A review of reviews. Emerging Investigator Series. Environ. Sci. Process. Impacts 2022, 24, 172–195. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-Q.; Huang, G.-Y.; Fang, G.-Z.; Li, X.-P.; Lei, D.-Q.; Shi, W.-J.; Xie, L.; Ying, G.-G. Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest. Water Res. 2022, 209, 117892. [Google Scholar] [CrossRef]
- Iftikhar, A.; Qaiser, Z.; Sarfraz, W.; Ejaz, U.; Aqeel, M.; Rizvi, Z.F.; Khalid, N. Understanding the leaching of plastic additives and subsequent risks to ecosystems. Water Emerg. Contam. Nanoplastics 2024, 3, 5. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bharat, G.K.; Gaonkar, O.; Mukhopadhyay, M.; Chandra, S.; Steindal, E.H.; Nizzetto, L. Endocrine-disrupting chemicals used as common plastic additives: Levels, profiles, and human dietary exposure from the Indian food basket. Sci. Total Environ. 2022, 810, 152200. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Kooi, M.; van Nes, E.H.V.; Scheffer, M.; Koelmans, A.A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef]
- Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E.; Linley, T.D. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R. Soc. Open Sci. 2019, 6, 180667. [Google Scholar] [CrossRef]
- Sun, N.; Shi, H.; Li, X.; Gao, C.; Liu, R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. Environ. Int. 2023, 171, 107711. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Kallenbach, E.M.F.; Rødland, E.S.; Buenaventura, N.T.; Hurley, R. Microplastics in terrestrial and freshwater environments. In Microplastic in the Environment: Pattern and Process; Bank, M.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 87–130. [Google Scholar] [CrossRef]
- Baho, D.L.; Bundschuh, M.; Futter, M.N. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Glob. Change Biol. 2021, 27, 3969–3986. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Ethics and Governance of Artificial Intelligence for Health: WHO Guidance (No. 9789240029200). 2021. Available online: https://apps.who.int/iris/handle/10665/332200 (accessed on 18 August 2025).
- Bhattacharjee, L.; Jazaei, F.; Salehi, M. Insights into the mechanism of plastics’ fragmentation under abrasive mechanical forces: An implication for agricultural soil health. CLEAN Soil Air Water 2023, 51, 2200395. [Google Scholar] [CrossRef]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef]
- Belioka, M.-P.; Achilias, D.S. The effect of weathering conditions in combination with natural phenomena/disasters on microplastics’ transport from aquatic environments to agricultural soils. Microplastics 2024, 3, 518–538. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V.; Koelmans, A.A.; et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Shikwambana, P.; Foxcroft, L.C.; Taylor, J.C.; Bouwman, H. Microplastic concentrations in sediments and waters do not decrease in two rivers flowing through the Kruger National Park, South Africa. Water Air Soil Pollut. 2024, 235, 675. [Google Scholar] [CrossRef]
- Canchari, F.; Iannacone, J. Microplastics in river sediments in two streams in an Andean region of Peru. Brazil. J. Wat. Res. 2024, 29, e31. [Google Scholar] [CrossRef]
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef]
- In, Y.; Wang, Z.; Li, W.; Chang, X.; Yang, J.; Yang, F. Microplastics in the sediment of Lake Ulansuhai of Yellow River Basin, China. Water Environ. Res. 2020, 92, 829–839. [Google Scholar] [CrossRef]
- Cabrera, L.; Gamarra, A.; Castillo, J.; Huamán, J.; Vásquez, J. Occurrence and characteristics of microplastics in sediments from lakes and rivers in the Peruvian Andes. Environ. Pollut. 2022, 308, 119638. [Google Scholar]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic rain in protected areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, G.; Revell, L.E.; Zhang, J.; Zuo, C.; Wang, D.; Le Ru, E.C.; Wu, G.; Mitrano, D.M. Long-range atmospheric transport of microplastics across the southern hemisphere. Nat. Commun. 2023, 14, 7898. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Thompson, R.C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 2019, 53, 4775–4783. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef]
- Owowenu, E.K.; Nnadozie, C.F.; Akamagwuna, F.; Noundou, X.S.; Uku, J.E.; Odume, O.N. A critical review of environmental factors influencing the transport dynamics of microplastics in riverine systems: Implications for ecological studies. Aquat. Ecol. 2023, 57, 557–570. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Sun, J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. Environ. Sci. Ecotechnol. 2024, 21, 100427. [Google Scholar] [CrossRef] [PubMed]
- van Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef]
- van Emmerik, T.H.M.; Frings, R.M.; Schreyers, L.J.; Hauk, R.; de Lange, S.I.; Mellink, Y.A.M. River plastic transport and deposition amplified by extreme flood. Nat. Water 2023, 1, 514–522. [Google Scholar] [CrossRef]
- Schreyers, L.J.; van Emmerik, T.H.M.; Bui, T.-K.L.; van Thi, K.L.; Vermeulen, B.; Nguyen, H.-Q.; Wallerstein, N.; Uijlenhoet, R.; van der Ploeg, M. River plastic transport affected by tidal dynamics. Hydrol. Earth Syst. Sci. 2024, 28, 589–610. [Google Scholar] [CrossRef]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine plastic debris: A new surface for microbial colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ. Sci. Processes Impacts 2016, 18, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Zalasiewicz, J.; Waters, C.N.; Ivar do Sul, J.A.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef]
- Iribarne, O.; Botto, F.; Martinetto, P.; Gutierrez, J.L. The role of burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping debris. Mar. Pollut. Bull. 2000, 40, 1057–1062. [Google Scholar] [CrossRef]
- Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 2011, 62, 1207–1217. [Google Scholar] [CrossRef]
- Pisani, X.G.; Lompré, J.S.; Pires, A.; Greco, L.L. Plastics in scene: A review of the effect of plastics in aquatic crustaceans. Environ. Res. 2022, 212, 113484. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- de Almeida, M.P.; Gaylarde, C.C.; Baptista Neto, J.A.; Delgado, J.F.; Lima, L.S.; Neves, C.V.; Pompermayer, L.L.O.; Vieira, K.; da Fonseca, E.M. The prevalence of microplastics on the earth and resulting increased imbalances in biogeochemical cycling. Water Emerg. Contam. Nanoplastics 2023, 2, 7. [Google Scholar] [CrossRef]
- Galgani, F.; Lusher, A.L.; Strand, J.; Haarr, M.L.; Vinci, M.; Molina Jack, E.; Kagi, R.; Aliani, S.; Herzke, D.; Nikiforov, V.; et al. Revisiting the strategy for marine litter monitoring within the European Marine Strategy Framework Directive (MSFD). Ocean & Coastal Management 2024, 255, 107254. [Google Scholar] [CrossRef]
- Lee, J.-W.; Lee, S.-W.; Lee, H.; Park, S.-R. Impact of environmental factors of stream ecosystems on aquatic invertebrate communities. Sustainability 2025, 17, 1252. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S. Addressing the microplastic crisis: A multifaceted approach to removal and regulation. Environ. Adv. 2024, 17, 100579. [Google Scholar] [CrossRef]
- Rivera-Rivera, D.M.; Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Sánchez-Álvarez, A.; Rodríguez-Delgado, J.M.; Cedillo-González, E.I.; Kaushik, G.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. Exploring innovative approaches for the analysis of micro- and nanoplastics: Breakthroughs in (bio)sensing techniques. Biosensors 2025, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, E.; Hansen, T.; Holmberg, K.; Olsen, T.; Stripple, J. Towards a Global Plastics Treaty: Tracing the UN Negotiations [Research Report]; Lunds Universitet. 2024. Available online: https://portal.research.lu.se/en/publications/towards-a-global-plastics-treaty-tracing-the-un-negotiations (accessed on 18 August 2025).
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Dowding, K.; Oprea, A. Nudges, regulations and liberty. Br. J. Pol. Sci. 2023, 53, 204–220. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jahan, I.; U-Shah, F.; Shahide, A.M.S.; Alam Shobuj, I.; Hossain, M.T.; Alam, E.; Islam, M.K. Public perception on plastic pollution: A web-based study in Dhaka City, Bangladesh. BMC Public Health 2025, 25, 710. [Google Scholar] [CrossRef]
- Messer, K.D.; Ganguly, D.; Xie, L. Applications of Behavioral Economics to Climate Change; Report Commissioned by the Committee on Future Directions for Applying Behavioral Economics to, Policy; University of Delaware: Newark, DE, USA; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2023. [Google Scholar]
- Paduani, M.; Ross, M.; Gardinali, P. Microplastic filtration by a coastal mangrove wetland as a novel ecosystem service. Microplastics 2025, 4, 15. [Google Scholar] [CrossRef]
- Valyrakis, M.; Gilja, G.; Liu, D.; Latessa, G. Transport of floating plastics through the fluvial vector: The impact of riparian zones. Water 2024, 16, 1098. [Google Scholar] [CrossRef]
- Vermeiren, P.; Muñoz, C.C.; Ikejima, K. Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms. Mar. Pollut. Bull. 2016, 113, 7–16. [Google Scholar] [CrossRef]
- Gupta, J.; Pahl-Wostl, C.; Zondervan, R. ‘Glocal’ water governance: A multi-level challenge in the Anthropocene. Curr. Opin. Environ. Sustain. 2013, 5, 573–580. [Google Scholar] [CrossRef]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Neuwirth, R.J. The global institutional governance of AI: A four-dimensional perspective. Int. J. Digit. Law Gov. 2024, 1, 113–153. [Google Scholar] [CrossRef]
- Flato, G.M. Earth system models: An overview. WIREs Clim. Change 2011, 2, 783–800. [Google Scholar] [CrossRef]
- Persson, L.; Carney Almroth, B.M.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef]
- Cabral, J.S.; Mendoza-Ponce, A.; da Silva, A.P.; Oberpriller, J.; Mimet, A.; Kieslinger, J.; Berger, T.; Blechschmidt, J.; Brönner, M.; Classen, A.; et al. The road to integrate climate change projections with regional land-use–biodiversity models. People Nat. 2024, 6, 1716–1741. [Google Scholar] [CrossRef]
- Larned, S.T.; Snelder, T.H. Meeting the growing need for land-water system modelling to assess land management actions. Environ. Manag. 2024, 73, 1–18. [Google Scholar] [CrossRef]
- Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y. Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Curr. Opin. Environ. Sustain. 2019, 36, 39–48. [Google Scholar] [CrossRef]
- Earth System Governance Project (ESGP). Environmental Governance for the Anthropocene: Opportunities and Challenges for Advancing Knowledge and Practice [Conference Panel]. In Proceedings of the 19th International Symposium on Society and Resource Management, Estes Park, CO, USA, 4–8 June 2013; Available online: https://www.earthsystemgovernance.org/event/environmental-governance-for-the-anthropocene-opportunities-and-challenges-for-advancing-knowledge-and-practice/ (accessed on 18 August 2025).
- Biermann, F.; Kim, R.E. (Eds.) Architectures of Earth System Governance: Institutional Complexity and Structural Transformation; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Prantl, J.; Barros-Platiau, A.F.; Inoue, C.Y.A.; Pereira, J.C.; Ribeiro, T.L.; Viola, E. Building Capabilities for Earth System Governance; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.-D.; Hwang, S.-O.; Han, B.-H.; Hwang, D.-s.; Kim, B.-H. Irreversible Plastic Flows and Sedimentary Ecological Entrapment: A Critical Review of Legacy Risks and Governance Strategies for Planetary Health. Nanomaterials 2025, 15, 1546. https://doi.org/10.3390/nano15201546
Moon S-D, Hwang S-O, Han B-H, Hwang D-s, Kim B-H. Irreversible Plastic Flows and Sedimentary Ecological Entrapment: A Critical Review of Legacy Risks and Governance Strategies for Planetary Health. Nanomaterials. 2025; 15(20):1546. https://doi.org/10.3390/nano15201546
Chicago/Turabian StyleMoon, Seong-Dae, Su-Ok Hwang, Byeong-Hun Han, Dae-sik Hwang, and Baik-Ho Kim. 2025. "Irreversible Plastic Flows and Sedimentary Ecological Entrapment: A Critical Review of Legacy Risks and Governance Strategies for Planetary Health" Nanomaterials 15, no. 20: 1546. https://doi.org/10.3390/nano15201546
APA StyleMoon, S.-D., Hwang, S.-O., Han, B.-H., Hwang, D.-s., & Kim, B.-H. (2025). Irreversible Plastic Flows and Sedimentary Ecological Entrapment: A Critical Review of Legacy Risks and Governance Strategies for Planetary Health. Nanomaterials, 15(20), 1546. https://doi.org/10.3390/nano15201546