MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications
Abstract
:1. Introduction
2. MoS2 Nanomaterials
2.1. MoS2 Structure
2.2. MoS2 Properties
2.2.1. Electronic Properties
2.2.2. Optical Properties
2.2.3. Catalytic Properties
2.3. MoS2 Functionalization for Biological Applications
3. Plasmonic Nanomaterials
3.1. Localized Surface Plasmon Resonance
3.2. Surface-Enhanced Raman Scattering
4. MoS2–Plasmonic Hybrid Platforms
4.1. Synthesis of MoS2–Plasmonic Hybrid Platforms
Methods | Advantages | Limitations |
CVD [128,130,132] | - High quality - Suitable for large-scale applications | - High equipment costs - Time-consuming |
Hydrothermal synthesis [130] | - Eco-friendly - Cost-effective | - Requires precise temperature and pressure control - Time-consuming |
Solution-based methods [130] | - Selective decoration of metal NPs - Allows processing at low temperatures | - Risk of nonuniform NP deposition - Limited scalability |
Solution-phase epitaxial Growth [129] | - Controlled growth of noble metal structures - Well-defined interfaces | - Requires precise control of growth conditions - Potential for nonuniform growth |
Site-specific electrodeposition [131] | - Precise control over catalyst placement | - Requires careful parameter optimization - Scalability challenges |
In situ synthesis [133] | - Direct growth on MoS2 enhances interaction with substrates - Defects act as nucleation sites for improved dispersion | - Requires careful control over synthesis conditions - Potential variability in particle size and morphology |
Mechanical exfoliation [129,130,131] | - Simple and reliable method for producing high-quality MoS2 - Effective for single-layer or few-layer materials | - Limited scalability for large-area applications - Labor-intensive with low yield |
Liquid exfoliation [129,130,133] | - Scalable for large quantities - Can enhance material properties | - Results in mixtures of different sizes and thicknesses - Lower quality compared to CVD |
Chemical etching [131,133] | - Facilitates selective material removal - Creates well-defined structures | - Involves hazardous chemicals - Difficult to control the etching process |
4.2. Biological Applications of MoS2–Plasmonic Hybrid Platforms
4.2.1. MoS2–Plasmonic Hybrid Platforms for Biosensing
4.2.2. MoS2–Plasmonic Hybrid Platforms for Bioimaging
4.2.3. MoS2–Plasmonic Hybrid Platforms for Phototherapy
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hou, J.; Hu, C.; Li, H.; Liu, H.; Xiang, Y.; Wu, G.; Li, Y. Nanomaterial-Based Magnetic Solid-Phase Extraction in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2025, 253, 116543. [Google Scholar] [CrossRef]
- Pandey, M.; Nazar, R.; Elella, M.H.A.; Praharaj, S.; Makhado, E.; Rout, D.; Gilani, E.H. A Comprehensive Review of Recent Developments in Biomedical Materials Based on Graphene-Modified Bio-Nanocomposites. BioNanoScience 2024, 15, 125. [Google Scholar] [CrossRef]
- Wang, L.; Ji, Y.; Chen, Y.; Zheng, S.; Wang, F.; Li, C. Recent Research Progress of Fluorescence Biosensors Based on Carbon Dots in Early Diagnosis of Diseases. TrAC Trends Anal. Chem. 2024, 180, 117962. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Y.; Mou, X.; Yang, X.; Cai, Y. Recent Advances of Photoresponsive Nanomaterials for Diagnosis and Treatment of Acute Kidney Injury. J. Nanobiotechnol. 2024, 22, 676. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Y.; Ma, K.; Wei, Z.; Ran, X.; Fu, X.; Zhang, C.; Zhao, C. Electrospun Nanofibrous Membranes Meet Antibacterial Nanomaterials: From Preparation Strategies to Biomedical Applications. Bioact. Mater. 2024, 42, 478–518. [Google Scholar] [CrossRef]
- Nam, N.N.; Trinh, T.N.D.; Do, H.D.K.; Phan, T.B.; Trinh, K.T.L.; Lee, N.Y. Advances and Opportunities of Luminescence Nanomaterial for Bioanalysis and Diagnostics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 327, 125347. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.; Khan, I.M.; Akhtar, W.; ul Haq, F.; Pasha, I.; Khan, M.K.I.; Mohsin, A.; Ahmad, S.; Zhang, Y.; Wang, Z. Aptamer Functionalized Gold Nanoclusters as an Emerging Nanoprobe in Biosensing, Diagnostic, Catalysis and Bioimaging. Talanta 2024, 268, 125270. [Google Scholar] [CrossRef] [PubMed]
- Castro, K.P.R.; Colombo, R.N.P.; Iost, R.M.; da Silva, B.G.R.; Crespilho, F.N. Low-Dimensionality Carbon-Based Biosensors: The New Era of Emerging Technologies in Bioanalytical Chemistry. Anal. Bioanal. Chem. 2023, 415, 3879–3895. [Google Scholar] [CrossRef]
- Prashanth, G.K.; Dileep, M.S.; Gadewar, M.; Ghosh, M.K.; Rao, S.; Giresha, A.S.; Prashanth, P.A.; Swamy, M.M.; Yatish, K.V.; Mutthuraju, M. Zinc Oxide Nanostructures: Illuminating the Potential in Biomedical Applications: A Brief Overview. BioNanoScience 2024, 14, 1876–1896. [Google Scholar] [CrossRef]
- Adul-Rasool, A.A.; Athair, D.M.; Zaidan, H.K.; Rheima, A.M.; Al-Sharify, Z.T.; Mohammed, S.H.; Kianfar, E. 0,1,2,3D Nanostructures, Types of Bulk Nanostructured Materials, and Drug Nanocrystals: An Overview. Cancer Treat. Res. Commun. 2024, 40, 100834. [Google Scholar] [CrossRef]
- Rafiei-Sarmazdeh, Z.; Morteza Zahedi-Dizaji, S.; Kafi Kang, A. Two-Dimensional Nanomaterials. In Nanostructures; Ameen, S., Akhtar, M.S., Shin, H.-S., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 3. [Google Scholar] [CrossRef]
- Preethi, S.; Varghese, S.; Biswas, K.; Vijayalakshmi, N. Unveiling the Properties of Layered 2D-Based Nano-Material Flexible Electronics in Biomedical Applications: A Review. J. Mater. Sci. 2024, 59, 11218–11245. [Google Scholar] [CrossRef]
- Maghimaa, M.; Sagadevan, S.; Boojhana, E.; Fatimah, I.; Lett, J.A.; Moharana, S.; Garg, S.; Al-Anber, M.A. Enhancing Biocompatibility and Functionality: Carbon Nanotube-Polymer Nanocomposites for Improved Biomedical Applications. J. Drug Deliv. Sci. Technol. 2024, 99, 105958. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef]
- Bridgman, P.W. Two New Modifications of Phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X.; Yu, M.; Li, J.; Tai, G.; et al. Two-Dimensional Boron Crystals: Structural Stability, Tunable Properties, Fabrications and Applications. Appl. Phys. Lett. 2017, 27, 1603300. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, W.; Zhou, D.; Hu, X.; Zhang, S.; Zhang, K.; Zhou, M.; Fuchs, H.; Zeng, H. Atomic Structure of Antimonene through Interface Design. Adv. Mater. 2019, 31, e1902606. [Google Scholar] [CrossRef]
- Ares, P.; Palacios, J.J.; Abellan, G.; Gomez-Herrero, J.; Zamora, F. Recent Progress on Antimonene: A New Bidimensional Material. Adv. Mater. 2018, 30, 1703771. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Chen, Y. Atomically Thin Boron Nitride: Unique Properties and Applications. Adv. Funct. Mater. 2016, 26, 2594–2608. [Google Scholar] [CrossRef]
- Han, W.-Q.; Wu, L.; Zhu, Y.; Watanabe, K.; Taniguchi, T. Structure of Chemically Derived Mono- and Few-Atomic-Layer Boron Nitride Sheets. Appl. Phys. Lett. 2008, 93, 223103. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M.S. Two-Dimensional and Layered Transition Metal Oxides. Appl. Mater. Today 2016, 5, 73–89. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef]
- Malisz, K.; Świeczko-Żurek, B. Graphene Production and Biomedical Applications: A Review. Crystals 2023, 13, 1413. [Google Scholar] [CrossRef]
- Cheng, C.; Li, D. Solvated Graphenes: An Emerging Class of Functional Soft Materials. Adv. Mater. 2013, 25, 13–30. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Chen, P. Biological and Chemical Sensors Based on Graphene Materials. Chem. Soc. Rev. 2012, 41, 2283–2307. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, C.; Zhang, H.; Wang, L. Two-Dimensional Graphene Analogues for Biomedical Applications. Chem. Soc. Rev. 2015, 44, 2681–2701. [Google Scholar] [CrossRef] [PubMed]
- Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Adv. Mater. 2016, 28, 6052–6074. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-Dimensional MoS2: A Promising Building Block for Biosensors. Biosens. Bioelectron. 2017, 89, 56–71. [Google Scholar] [CrossRef]
- Barua, S.; Dutta, H.S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-Based Advanced Biosensors: A Review. ACS Appl. Nano Mater. 2018, 1, 2–25. [Google Scholar] [CrossRef]
- Dalila, R.N.; Md Arshad, M.K.; Gopinath, S.C.B.; Norhaimi, W.M.W.; Fathil, M.F.M. Current and Future Envision on Developing Biosensors Aided by 2D Molybdenum Disulfide (MoS2) Productions. Biosens. Bioelectron. 2019, 132, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, Y.; Tan, C.; Zhang, X.; Lu, Q.; Sindoro, M.; Huang, X.; Huang, W.; Wang, L.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Biosensing Applications. Mater. Chem. Front. 2017, 1, 24–36. [Google Scholar] [CrossRef]
- Yadav, V.; Roy, S.; Singh, P.; Khan, Z.; Jaiswal, A. 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small 2019, 15, e1803706. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. Chem 2018, 4, 1284–1313. [Google Scholar] [CrossRef]
- Gong, L.; Yan, L.; Zhou, R.; Xie, J.; Wu, W.; Gu, Z. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Combination Cancer Therapy. J. Mater. Chem. B 2017, 5, 1873–1895. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, J.; Wu, C. 7-MoS2-Based Biomaterials for Cancer Therapy. In Biomaterials in Translational Medicine; Yang, L., Bhaduri, S.B., Webster, T.J., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 141–161. Available online: https://www.sciencedirect.com/science/article/pii/B9780128134771000074?via%3Dihub (accessed on 11 January 2019).
- Liang, W.; Luo, X. Theoretical Studies of MoS2 and Phosphorene Drug Delivery for Antituberculosis Drugs. J. Phys. Chem. C 2020, 124, 8279–8287. [Google Scholar] [CrossRef]
- Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.-T.; Garaj, S.; Leong, D.T. Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, e1902333. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, M. 11-Two-Dimensional Nanomaterials in Cancer Theranostics. In Theranostic Bionanomaterials; Cui, W., Zhao, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–288. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128153413000110 (accessed on 3 May 2019).
- Teo, W.Z.; Chng, E.L.; Sofer, Z.; Pumera, M. Cytotoxicity of Exfoliated Transition-Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues. Chem. Eur. J. 2014, 20, 9627–9632. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Li, K.; Zhu, J.; Xu, H.; Ali, N.; Rahimi-Iman, A.; Wu, H. A New Strategy to Improve the Performance of MoS2-Based 2D Photodetector by Synergism of Colloidal CuInS2 Quantum Dots and Surface Plasma Resonance of Noble Metal Nanoparticles. J. Alloy. Compd. 2021, 856, 158179. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Zhai, T.-T.; Zhou, Y.; Yang, D.-R.; Wang, F.-B.; Xia, X.-H. Localized Surface Plasmon Resonance Enhanced Label-Free Photoelectrochemical Immunoassay by Au-MoS2 Nanohybrid. Electrochim. Acta 2018, 271, 361–369. [Google Scholar] [CrossRef]
- El Barghouti, M.; Akjouj, A.; Mir, A. MoS2–Graphene Hybrid Nanostructures Enhanced Localized Surface Plasmon Resonance Biosensors. Opt. Laser Technol. 2020, 130, 106306. [Google Scholar] [CrossRef]
- Younis, M.R.; Wang, C.; An, R.; Wang, S.; Younis, M.A.; Li, Z.-Q.; Wang, Y.; Ihsan, A.; Ye, D.; Xia, X.-H. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS Nano 2019, 13, 2544–2557. [Google Scholar] [CrossRef]
- Toh, R.J.; Sofer, Z.; Luxa, J.; Sedmidubsky, D.; Pumera, M. 3R Phase of MoS2 and WS2 Outperforms the Corresponding 2H Phase for Hydrogen Evolution. Chem. Commun. 2017, 53, 3054–3057. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Hafez, A.M.; Cao, D.; Mukhopadhyay, A.; Ma, Y.; Zhu, H. Metallic MoS2 for High Performance Energy Storage and Energy Conversion. Small 2018, 14, e1800640. [Google Scholar] [CrossRef]
- Manzeli, S.; Dumcenco, D.; Migliato Marega, G.; Kis, A. Self-Sensing, Tunable Monolayer MoS2 Nanoelectromechanical Resonators. Nat. Commun. 2019, 10, 4831. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Dai, Z.; Jin, W.; Grady, M.; Sadowski, J.T.; Dadap, J.I.; Osgood, R.M.; Pohl, K. Surface Structure of Bulk 2H-MoS2 (0001) and Exfoliated Suspended Monolayer MoS2: A Selected Area Low Energy Electron Diffraction Study. Surf. Sci. 2017, 660, 16–21. [Google Scholar] [CrossRef]
- Siao, M.D.; Shen, W.C.; Chen, R.S.; Chang, Z.W.; Shih, M.C.; Chiu, Y.P.; Cheng, C.M. Two-Dimensional Electronic Transport and Surface Electron Accumulation in MoS2. Nat. Commun. 2018, 9, 1442. [Google Scholar] [CrossRef] [PubMed]
- Seivane, L.F.; Barron, H.; Botti, S.; Marques, M.A.; Rubio, A.; Lopez-Lozano, X. Atomic and Electronic Properties of Quasi-One-Dimensional MoS2 Nanowires. J. Mater. Res. 2013, 28, 240–249. [Google Scholar] [CrossRef]
- Elizondo-Villarreal, N.; Velázquez-Castillo, R.; Galván, D.H.; Camacho, A.; José Yacamán, M. Structure and Catalytic Properties of Molybdenum Sulfide Nanoplatelets. Appl. Catal. A Gen. 2007, 328, 88–97. [Google Scholar] [CrossRef]
- Tahersima, M.H.; Birowosuto, M.D.; Ma, Z.; Coley, W.C.; Valentin, M.D.; Naghibi Alvillar, S.; Lu, I.H.; Zhou, Y.; Sarpkaya, I.; Martinez, A.; et al. Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae. ACS Photonics 2017, 4, 1713–1721. [Google Scholar] [CrossRef]
- Saleem, U.; Permatasari, F.A.; Iskandar, F.; Ogi, T.; Okuyama, K.; Darma, Y.; Zhao, M.; Loh, K.P.; Rusydi, A.; Coquet, P.; et al. Surface Plasmon Enhanced Nitrogen-Doped Graphene Quantum Dot Emission by Single Bismuth Telluride Nanoplates. Adv. Opt. Mater. 2017, 5, 1700176. [Google Scholar] [CrossRef]
- Hou, S.; Tobing, L.Y.M.; Wang, X.; Xie, Z.; Yu, J.; Zhou, J.; Zhang, D.; Dang, C.; Coquet, P.; Tay, B.K.; et al. Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities. Adv. Opt. Mater. 2019, 7, 1900857. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano 2012, 6, 5449–5456. [Google Scholar] [CrossRef] [PubMed]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide TS2. Phys. Rev. B 2011, 83, 245213. [Google Scholar] [CrossRef]
- Venkata Subbaiah, Y.P.; Saji, K.J.; Tiwari, A. Atomically Thin MoS2: A Versatile Nongraphene 2D Material. Adv. Funct. Mater. 2016, 26, 2046–2069. [Google Scholar] [CrossRef]
- Halim, S.N.M.; Zuikafly, S.N.F.; Taib, M.F.M.; Ahmad, F. First Principles Study on Electronic and Optical Properties of Graphene/MoS2 for Optoelectronic Application. In Proceedings of the 2020 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 28–29 July 2020; pp. 29–32. Available online: https://ieeexplore.ieee.org/document/9166878 (accessed on 14 August 2020).
- Nalwa, H.S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.C.; Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2. Nano Lett. 2013, 13, 1416–1421. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S.; et al. All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638. [Google Scholar] [CrossRef] [PubMed]
- Makarova, M.; Okawa, Y.; Aono, M. Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation. J. Phys. Chem. C 2012, 116, 22411–22416. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Sawada, H.; Han, G.G.; Samuels, T.; Allen, C.S.; Kirkland, A.I.; Grossman, J.C.; Warner, J.H. Atomic Structure and Dynamics of Single Platinum Atom Interactions with Monolayer MoS2. ACS Nano 2017, 11, 3392–3403. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Sandhyarani, N. Enhancing the Catalytic Activity of Bulk MoS2 Towards Hydrogen Evolution Reaction by the Formation of MoS2-MoO3-Re2O7 Heterostructure. J. Colloid Interface Sci. 2022, 623, 819–831. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, R.; Yang, J.; Li, J.; Li, S.; Li, Y.; Zhang, J.; Feng, J.; Liu, B.; Li, W. Molybdenum Disulfide (MoS2)-Based Electrocatalysts for Hydrogen Evolution Reaction: From Mechanism to Manipulation. J. Energy Chem. 2022, 74, 45–71. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular Functionalization of Two-Dimensional MoS2 Nanosheets. Chem. Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef]
- Ataca, C.; Ciraci, S. Functionalization of Single-Layer MoS2 Honeycomb Structures. J. Phys. Chem. C 2011, 115, 13303–13311. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Ou, J.Z. Biosensors Based on Two-Dimensional MoS2. ACS Sens. 2015, 1, 5–16. [Google Scholar] [CrossRef]
- Yu, X.; Prévot, M.S.; Sivula, K. Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS2 Enabled by Sonopolymer Assisted Exfoliation and Surface Modification. Chem. Mat. 2014, 26, 5892–5899. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M. Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2. ACS Nano 2012, 6, 7311–7317. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide Nanosheet-Based Composites. Chem. Soc. Rev. 2015, 44, 2713–2731. [Google Scholar] [CrossRef]
- Voiry, D.; Goswami, A.; Kappera, R.; Castro e Silva, C.d.C.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Covalent Functionalization of Monolayered Transition Metal Dichalcogenides by Phase Engineering. Nat. Chem. 2015, 7, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Muñoz, I.; Laghouati, S.; Torres-Cavanillas, R.; Morant-Giner, M.; Vassilyeva, N.V.; Forment-Aliaga, A.; Giménez-Marqués, M. Fast Polymeric Functionalization Approach for the Covalent Coating of MoS2 Layers. ACS Appl. Mater. Interfaces 2021, 13, 36475–36481. [Google Scholar] [CrossRef]
- Gan, F.; Dong, N.; Liu, Z.; Jia, H.; Wang, J.; Chen, Y. Organic Small Molecule Covalently Functionalized Molybdenum Disulfide Hybrid Material for Optical Limiting. Bull. Chem. Soc. Jpn. 2019, 93, 26–31. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug Delivery with Pegylated MoS2 Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer. Adv. Mater. 2014, 26, 3433–3440. [Google Scholar] [CrossRef]
- Kwon, H.J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B.H.; Kim, D.; Hyeon, T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. Adv. Mater. 2018, 30, e1704290. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A Review of Recent Applications of Porous Metals and Metal Oxide in Energy Storage, Sensing and Catalysis. J. Mater. Sci. 2019, 54, 949–973. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of Metal and Metal Oxide Nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237–254. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. Discov. Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Mphuthi, N.; Sikhwivhilu, L.; Ray, S.S. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors 2022, 12, 386. [Google Scholar] [CrossRef]
- Lim, W.Q.; Gao, Z. Plasmonic Nanoparticles in Biomedicine. Nano Today 2016, 11, 168–188. [Google Scholar] [CrossRef]
- Lee, S.; Sun, Y.; Cao, Y.; Kang, S.H. Plasmonic Nanostructure-Based Bioimaging and Detection Techniques at the Single-Cell Level. TrAC Trends Anal. Chem. 2019, 117, 58–68. [Google Scholar] [CrossRef]
- Acunzo, A.; Scardapane, E.; De Luca, M.; Marra, D.; Velotta, R.; Minopoli, A. Plasmonic Nanomaterials for Colorimetric Biosensing: A Review. Chemosensors 2022, 10, 136. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Su, Z.; Pang, H.; Chen, C. Recent Progress and Challenges in Plasmonic Nanomaterials. Nanotechnol. Rev. 2022, 11, 846–873. [Google Scholar] [CrossRef]
- Borghei, Y.S.; Hosseinkhani, S.; Ganjali, M.R. “Plasmonic Nanomaterials”: An Emerging Avenue in Biomedical and Biomedical Engineering Opportunities. J. Adv. Res. 2022, 39, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Çimen, D.; Ünal, S.; Denizli, A. Nanoparticle-Assisted Plasmonic Sensors: Recent Developments in Clinical Applications. Anal. Biochem. 2025, 698, 115753. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, T.; Chen, J.; Wang, C.; Zhang, H.; Shao, Y. Two-Dimensional Nanomaterial-Based Plasmonic Sensing Applications: Advances and Challenges. Coord. Chem. Rev. 2020, 410, 213218. [Google Scholar] [CrossRef]
- Mak, K.F.; Sfeir, M.Y.; Wu, Y.; Lui, C.H.; Misewich, J.A.; Heinz, T.F. Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 2008, 101, 196405. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Huang, S.; Song, C.; Zhang, G.; Yan, H. Graphene Plasmonics: Physics and Potential Applications. Nanophotonics 2016, 6, 1191–1204. [Google Scholar] [CrossRef]
- Zhang, N.; Han, C.; Fu, X.; Xu, Y.-J. Function-Oriented Engineering of Metal-Based Nanohybrids for Photoredox Catalysis: Exerting Plasmonic Effect and Beyond. Chem 2018, 4, 1832–1861. [Google Scholar] [CrossRef]
- Erwin, W.R.; Zarick, H.F.; Talbert, E.M.; Bardhan, R. Light Trapping in Mesoporous Solar Cells with Plasmonic Nanostructures. Energy Environ. Sci. 2016, 9, 1577–1601. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Terborg, R.A.; Pello, J.; Belushkin, A.A.; Jahani, Y.; Pruneri, V.; Altug, H. Phase-Sensitive Plasmonic Biosensor Using a Portable and Large Field-of-View Interferometric Microarray Imager. Light Sci. Appl. 2018, 7, 17152. [Google Scholar] [CrossRef]
- Verma, S.; Pathak, A.K.; Rahman, B.M.A. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures. Micromachines 2024, 15, 502. [Google Scholar] [CrossRef]
- Jeong, H.-H.; Choi, E.; Ellis, E.; Lee, T.-C. Recent Advances in Gold Nanoparticles for Biomedical Applications: From Hybrid Structures to Multi-Functionality. J. Mater. Chem. B 2019, 7, 3480–3496. [Google Scholar] [CrossRef]
- Zheng, W.; Chiamori, H.C.; Liu, G.L.; Lin, L.; Chen, F.F. Nanofabricated Plasmonic Nano-Bio Hybrid Structures in Biomedical Detection. Nanotechnol. Rev. 2012, 1, 213–233. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z. Gold Nanoparticle Mediated Phototherapy for Cancer. J. Nanomater. 2016, 2016, 5497136. [Google Scholar] [CrossRef]
- Mukha, I.; Chepurna, O.; Vityuk, N.; Khodko, A.; Storozhuk, L.; Dzhagan, V.; Zahn, D.R.T.; Ntziachristos, V.; Chmyrov, A.; Ohulchanskyy, T.Y. Multifunctional Magneto-Plasmonic Fe3O4/Au Nanocomposites: Approaching Magnetophoretically-Enhanced Photothermal Therapy. Nanomaterials 2021, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zheng, W.; Singh, D.J. Light Scattering and Surface Plasmons on Small Spherical Particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef]
- Battie, Y.; Resano-Garcia, A.; Chaoui, N.; En Naciri, A. Optical Properties of Plasmonic Nanoparticles Distributed in Size Determined from a Modified Maxwell-Garnett-Mie Theory. Phys. Status Solidi C 2015, 12, 142–146. [Google Scholar] [CrossRef]
- Borah, R.; Verbruggen, S.W. Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications. J. Phys. Chem. C 2020, 124, 12081–12094. [Google Scholar] [CrossRef]
- Sadeghi, F.; Soleimanian, V.; Ghasemi, M.; Ahangar, H.A. Simulation of Fe2O3/Au@MoS2 Plasmonic Core/Shell@Shell Nanocomposites: Optical Properties and Photothermal Application. Mater. Today Commun. 2023, 37, 106950. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Huang, Y. Time-Domain Finite Element Method and Analysis for Modeling of Surface Plasmon Polaritons. Comput. Methods Appl. Mech. Eng. 2020, 372, 113349. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Ruan, F.; Li, Z.; Ren, B.; Xu, H.; Tian, Z. FDTD for Plasmonics: Applications in Enhanced Raman Spectroscopy. Chin. Sci. Bull. 2010, 55, 2635–2642. [Google Scholar] [CrossRef]
- Ke, Q.; Chen, L.; Fang, B.; Chen, Y.; Zhang, W. Simulating Electric Field Intensity Distribution of Lspr Based on Gold Nanobipyramids. Mater. Today Commun. 2021, 26, 101953. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef]
- Battie, Y.; Resano-Garcia, A.; Chaoui, N.; Zhang, Y.; En Naciri, A. Extended Maxwell-Garnett-Mie Formulation Applied to Size Dispersion of Metallic Nanoparticles Embedded in Host Liquid Matrix. J. Chem. Phys 2014, 140, 044705. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Barr, J.; Chaffin, E.; Huang, X.; Wang, Y. Near-Field and Far-Field Optical Properties of Magnetic Plasmonic Core-Shell Nanoparticles with Non-Spherical Shapes: A Discrete Dipole Approximation Study. AIP Adv. 2019, 9, 025021. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Xu, Y.; Zhu, H.; Lei, M.; Zhang, X.; Xu, M. Effective Medium Theory for Two-Dimensional Random Media Composed of Core–Shell Cylinders. Opt. Commun. 2013, 306, 9–16. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Pinkevych, I.P.; Sluckin, T.J.; Urbas, A.M.; Evans, D.R. Effective Medium Theory for Anisotropic Media with Plasmonic Core-Shell Nanoparticle Inclusions. Eur. Phys. J. Plus 2018, 133, 373. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Li, C.; Ye, Z.; Bell, S.E.J. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials. Acc. Chem. Res. 2023, 56, 2072–2083. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.-I.; Dieringer, J.A.; Van Duyne, R.P. Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Potara, M.; Gabudean, A.-M.; Astilean, S. Solution-Phase, Dual Lspr-Sers Plasmonic Sensors of High Sensitivity and Stability Based on Chitosan-Coated Anisotropic Silver Nanoparticles. J. Mater. Chem. 2011, 21, 3625–3633. [Google Scholar] [CrossRef]
- Vlasov, A.V.; Maliar, N.L.; Bazhenov, S.V.; Nikelshparg, E.I.; Brazhe, N.A.; Vlasova, A.D.; Osipov, S.D.; Sudarev, V.V.; Ryzhykau, Y.L.; Bogorodskiy, A.O.; et al. Raman Scattering: From Structural Biology to Medical Applications. Crystals 2020, 10, 38. [Google Scholar] [CrossRef]
- Lussier, F.; Brulé, T.; Vishwakarma, M.; Das, T.; Spatz, J.P.; Masson, J.-F. Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events. Nano Lett. 2016, 16, 3866–3871. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pan, R.; Tian, S.; Gu, C.; Li, J. Plasmonic Hybrids of MoS2 and 10-nm Nanogap Arrays for Photoluminescence Enhancement. Micromachines 2020, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Samy, O.; Zeng, S.; Birowosuto, M.D.; El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11, 355. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, H.; Zhang, Y.-J.; Zheng, Q.; Tan, S.; Zhao, J.; Chen, H.-B.; Chen, J.-J.; Gu, Y.; Yu, H.-Q.; et al. Patterning of Transition Metal Dichalcogenides Catalyzed by Surface Plasmons with Atomic Precision. Chem 2021, 7, 1626–1638. [Google Scholar] [CrossRef]
- Nam, K.; Im, J.; Han, G.H.; Park, J.Y.; Kim, H.; Park, S.; Yoo, S.; Haddadnezhad, M.; Ahn, J.S.; Park, K.-D.; et al. Photoluminescence of MoS2 on Plasmonic Gold Nanoparticles Depending on the Aggregate Size. ACS Omega 2024, 9, 21587–21594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zheng, Y.J.; Zhu, L.R.; Zou, H.L.; Luo, H.Q.; Li, N.B.; Li, B.L. Molybdenum Disulfide Nanostructures Coupled with Metal Plasmonics for Improved Electronic and Photonic Performances. J. Mater. Chem. C 2023, 11, 13657–13674. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-Phase Epitaxial Growth of Noble Metal Nanostructures on Dispersible Single-Layer Molybdenum Disulfide Nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Huang, J.K.; Jin, L.; Hsu, Y.T.; Yu, S.F.; Li, L.J.; Yang, H.Y. Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Sci. Rep. 2013, 3, 1839. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.M.; Li, J.; Zhou, Y.; Li, Z.Q.; Yin, Y.C.; Xia, X.H. Site-Specific Electrodeposition Enables Self-Terminating Growth of Atomically Dispersed Metal Catalysts. Nat. Commun. 2020, 11, 4558. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, D.; Zhao, X.; Quan, W.; Jiang, Q.; Li, X.; Tang, B.; Hu, J.; Zhu, L.; Pan, S.; et al. Epitaxial Growth of Inch-Scale Single-Crystal Transition Metal Dichalcogenides Through the Patching of Unidirectionally Orientated Ribbons. Nat. Commun. 2022, 13, 3238. [Google Scholar] [CrossRef]
- Li, B.L.; Zou, H.L.; Luo, H.Q.; Leong, D.T.; Li, N.B. Layered MoS2 Defect-Driven in Situ Synthesis of Plasmonic Gold Nanocrystals Visualizes the Planar Size and Interfacial Diversity. Nanoscale 2020, 12, 11979–11985. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xu, Y.; Sun, Q.; Gu, X.; Weng, L.; Wang, L. Noble Metal Nanostructure-Decorated Molybdenum Disulfide Nanocomposites: Synthesis and Applications. J. Mater. Chem. B 2018, 6, 5323–5334. [Google Scholar] [CrossRef]
- Li, B.L.; Zou, H.L.; Tian, J.K.; Chen, G.; Wang, X.H.; Duan, H.; Li, X.L.; Shi, Y.; Chen, J.R.; Li, L.J.; et al. Principle of Proximity: Plasmonic Hot Electrons Motivate Donator-Adjacent Semiconductor Defects with Enhanced Electrocatalytic Hydrogen Evolution. Nano Energy 2019, 60, 689–700. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, B.; Jia, F.; Song, S. Reduction Mechanism of Au Metal Ions into Au Nanoparticles on Molybdenum Disulfide. Nanoscale 2019, 11, 9488–9497. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, L.; Bosi, M.; Fiorenza, P.; Panasci, S.E.; Orsi, D.; Rotunno, E.; Cristofolini, L.; Rossi, F.; Giannazzo, F.; Fabbri, F. Gold Nanoparticle Assisted Synthesis of MoS2 Monolayers by Chemical Vapor Deposition. Nanoscale Adv. 2021, 3, 4826–4833. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; DiStefano, J.G.; Murthy, A.A.; Cain, J.D.; Hanson, E.D.; Li, Q.; Castro, F.C.; Chen, X.; Dravid, V.P. Superior Plasmonic Photodetectors Based on Au@MoS2 Core-Shell Heterostructures. ACS Nano 2017, 11, 10321–10329. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hao, S.; DiStefano, J.G.; Murthy, A.A.; Hanson, E.D.; Xu, Y.; Wolverton, C.; Chen, X.; Dravid, V.P. Site-Specific Positioning and Patterning of MoS2 Monolayers: The Role of Au Seeding. ACS Nano 2018, 12, 8970–8976. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Jia, G.; Yao, J. Formation of an Ag/MoS2 Composite Structure through Photothermal Conversion. AIP Adv. 2020, 10, 115311. [Google Scholar] [CrossRef]
- Garoli, D.; Mosconi, D.; Miele, E.; Maccaferri, N.; Ardini, M.; Giovannini, G.; Dipalo, M.; Agnoli, S.; De Angelis, F. Hybrid Plasmonic Nanostructures Based on Controlled Integration of MoS2 Flakes on Metallic Nanoholes. Nanoscale 2018, 10, 17105–17111. [Google Scholar] [CrossRef]
- Zuo, P.; Jiang, L.; Li, X.; Li, B.; Ran, P.; Li, X.; Qu, L.; Lu, Y. Metal (Ag, Pt)–MoS2 Hybrids Greenly Prepared Through Photochemical Reduction of Femtosecond Laser Pulses for SERS and HER. ACS Sustain. Chem. Eng. 2018, 6, 7704–7714. [Google Scholar] [CrossRef]
- Yaiwong, P.; Jakmunee, J.; Pimalai, D.; Ounnunkad, K.; Bamrungsap, S. An Electrochemical/SERS Dual-Mode Immunosensor Using TMB/Au Nanotag and Au@2D-MoS2 Modified Screen-Printed Electrode for Sensitive Detection of Prostate Cancer Biomarker. Colloid Surf. B Biointerfaces 2024, 243, 114124. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, Y.; Wang, M.; Zhang, Q.; Ma, Q. Distance-Dependent Plasmon-Enhanced Electrochemiluminescence Biosensor Based on MoS2 Nanosheets. Biosens. Bioelectron. 2020, 148, 111823. [Google Scholar] [CrossRef] [PubMed]
- Nor, S.N.S.; Rasanang, N.S.; Karman, S.B.; Zaman, W.S.W.K.; Harun, S.W.; Arof, H. Incorporation of Thiol-Modified and Carboxyl-MoS2 Films as Support Layer in Surface Plasmon Resonance Sensing Platform for SARS-CoV-2 Spike Protein Detection. IEEE Sens. J. 2024, 24, 6026–6037. [Google Scholar] [CrossRef]
- Maji, S.K.; Yu, S.; Chung, K.; Sekkarapatti Ramasamy, M.; Lim, J.W.; Wang, J.; Lee, H.; Kim, D.H. Synergistic Nanozymetic Activity of Hybrid Gold Bipyramid–Molybdenum Disulfide Core@Shell Nanostructures for Two-Photon Imaging and Anticancer Therapy. ACS Appl. Mater. Interfaces 2018, 10, 42068–42076. [Google Scholar] [CrossRef]
- Xu, Y.; Kang, Q.; Yang, B.; Chen, B.; He, M.; Hu, B. A Nanoprobe Based on Molybdenum Disulfide Nanosheets and Silver Nanoclusters for Imaging and Quantification of Intracellular Adenosine Triphosphate. Anal. Chim. Acta 2020, 1134, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Li, W.; Fan, Y.; Zhou, W.; Xiao, C.; Yu, P.; Liu, Y.; Liu, X.; Huang, Z.; et al. LSPR- Enhanced Photoresponsive Antibacterial Efficiency of Bi/MoS2-Loaded Fibrin Gel for Management of Diabetic Wounds. Int. J. Biol. Macromol. 2024, 277, 134430. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Li, J.; Cao, S.; Shi, J. In Situ Growth of MoS2@Aunrs Nanoparticles with Synergistically Enhanced NIR Response for Controlled Drug Release. Mater. Today Commun. 2023, 37, 107448. [Google Scholar] [CrossRef]
- Lv, J.; Li, B.; Luo, T.; Nie, C.; Pan, W.; Ge, X.; Zheng, J.; Rui, Y.; Zheng, L. Selective Photothermal Therapy Based on Lipopolysaccharide Aptamer Functionalized MoS2 Nanosheet-Coated Gold Nanorods for Multidrug-Resistant Pseudomonas aeruginosa Infection. Adv. Healthc. Mater. 2023, 12, e2202794. [Google Scholar] [CrossRef]
- Yougbare, S.; Mutalik, C.; Chung, P.F.; Krisnawati, D.I.; Rinawati, F.; Irawan, H.; Kristanto, H.; Kuo, T.R. Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. Nanomaterials 2021, 11, 3064. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Tan, X.; Pang, X.; You, Q.; Sun, Q.; Tan, F.; Li, N. Photosensitizer Loaded PEG-MoS2–Au Hybrids for CT/NIRF Imaging-Guided Stepwise Photothermal and Photodynamic Therapy. J. Mater. Chem. B 2017, 5, 2286–2296. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Cui, X.; Wang, Z.; Dong, C.; Li, J.; Han, X. Recoverable Peroxidase-Like Fe3O4@MoS2-Ag Nanozyme with Enhanced Antibacterial Ability. Chem. Eng. J. 2021, 408, 127240. [Google Scholar] [CrossRef]
- Rodriguez-da-Silva, S.; El-Hachimi, A.G.; Lopez-de-Luzuriaga, J.M.; Rodriguez-Castillo, M.; Monge, M. Boosting the Catalytic Performance of AuAg Alloyed Nanoparticles Grafted on MoS2 Nanoflowers through NIR-Induced Light-to-Thermal Energy Conversion. Nanomaterials 2023, 13, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Schmid, B.; Huisken, J. Optical Tomography Complements Light Sheet Microscopy for in TOTO Imaging of Zebrafish Development. Development 2015, 142, 1016–1020. [Google Scholar] [CrossRef]
- Mayer, J.; Robert-Moreno, A.; Danuser, R.; Stein, J.V.; Sharpe, J.; Swoger, J. OPTiSPIM: Integrating Optical Projection Tomography in Light Sheet Microscopy Extends Specimen Characterization to Nonfluorescent Contrasts. Opt. Lett. 2014, 39, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Rogalski, M.M.; Anker, J.N. Advances in Functional X-Ray Imaging Techniques and Contrast Agents. Phys. Chem. Chem. Phys. 2012, 14, 13469–13486. [Google Scholar] [CrossRef]
- Pushie, M.J.; Pickering, I.J.; Korbas, M.; Hackett, M.J.; George, G.N. Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems. Chem. Rev. 2014, 114, 8499–8541. [Google Scholar] [CrossRef] [PubMed]
- Keevend, K.; Coenen, T.; Herrmann, I.K. Correlative Cathodoluminescence Electron Microscopy Bioimaging: Towards Single Protein Labelling with Ultrastructural Context. Nanoscale 2020, 12, 15588–15603. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, M.; Liang, S.; Zhang, Y.; Li, C.; Mou, T.; Yang, W.; Zhang, X.; Li, B.; Huang, C.; et al. Fluorine-18 Labeled Rare-Earth Nanoparticles for Positron Emission Tomography (PET) Imaging of Sentinel Lymph Node. Biomaterials 2011, 32, 2999–3007. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, V.P.; Ordonez, A.A.; Klunk, M.; Prideaux, B.; Wang, H.; Zhuo, Z.; Tonge, P.J.; Dannals, R.F.; Holt, D.P.; Lee, C.K.; et al. Determination of [11c]Rifampin Pharmacokinetics within Mycobacterium Tuberculosis-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging. Antimicrob. Agents Chemother. 2015, 59, 5768–5774. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Nonaka, H.; Takakusagi, Y.; Sando, S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew. Chem. Int. Ed. Engl. 2021, 60, 14779–14799. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Jia, L.; Luo, Y.-F.; Xu, J.; Chen, R.-H.; Ge, Z.-J.; Ma, T.-L.; Chen, H.; Zhu, T.-F. Multifunctional Nanocomposite Based on Halloysite Nanotubes for Efficient Luminescent Bioimaging and Magnetic Resonance Imaging. Int. J. Nanomed. 2016, 11, 4765–4776. [Google Scholar] [CrossRef] [PubMed]
- Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem. Rev. 2010, 110, 2795–2838. [Google Scholar] [CrossRef]
- Melancon, M.P.; Zhou, M.; Li, C. Cancer Theranostics with Near-Infrared Light-Activatable Multimodal Nanoparticles. Acc. Chem. Res. 2011, 44, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In Vitro and in Vivo Near-Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Adv. Mater. 2012, 24, 5586–5592. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Verma, S.S.; Bhatia, P. Plasmonic Photothermal Therapy (PPTT) of Cancer. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Chakraborti, S., Ed.; Springer: Singapore, 2021; pp. 1–21. [Google Scholar]
- Sethulekshmi, A.S.; Saritha, A.; Joseph, K.; Aprem, A.S.; Sisupal, S.B. MoS2 Based Nanomaterials: Advanced Antibacterial Agents for Future. J. Control. Release 2022, 348, 158–185. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-Y.; Wu, J.M. Localized Surface Plasmon Resonance Coupling with Piezophototronic Effect for Enhancing Hydrogen Evolution Reaction with Au@MoS2 Nanoflowers. Nano Energy 2021, 87, 106131. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Kamata, H.; Honda, S.-I.; Maeda, S.; Chang, L.; Hirata, H.; Karin, M. Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases. Cell 2005, 120, 649–661. [Google Scholar] [CrossRef]
- Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of Reactive Oxygen Species (ROS) in Apoptosis Induction. Apoptosis 2000, 5, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, H.; Wang, Y.; Sevencan, C.; Li, B.L. Functionalized MoS2-Based Nanomaterials for Cancer Phototherapy and Other Biomedical Applications. ACS Mater. Lett. 2021, 3, 462–496. [Google Scholar] [CrossRef]
Hybrid Platform | Application | Target |
AuNPs on 2D MoS2 modified on the working carbon electrode of an SPE [143] | Detection of PSA, a biomarker associated with prostate cancer | PSA |
Nonmetallic plasmonic MoS2 nanosheets [144] | DNA sensor for detecting the hepatitis C virus gene | Hepatitis C virus gene |
Carboxyl-functionalized MoS2 (MoS2–COOH) in an SPR detection platform [145] | Detection of the SARS-CoV-2 spike protein (S protein) | SARS-CoV-2 spike protein |
AuNBPs combined with a MoS2 semiconductor layer (AuNBPs@MoS2) [146] | Anticancer therapy | HeLa cancer cells |
Composite nanoprobe (Ag@MoS2) comprising DNA–Ag nanoclusters adsorbed onto MoS2 nanosheets [147] | In situ fluorescence imaging and quantitative analysis of intracellular ATP levels | Intracellular ATP in HeLa cells |
Bi/MoS2 heterojunction complex in a fibrin gel [148] | Antibacterial treatment for diabetic wounds | S. aureus and E. coli bacteria |
MA with HAP and PDA [149] | Controlled drug release | Anticancer drug DOX and MCF-7 cancer cells |
MoS2–AuNRs–aptamer NPs [150] | Selective photothermal therapy for antimicrobial action | MRPA |
MoS2 and AuNRs dual PPTT nanoagent [45] | Synergistic cancer phototherapy | ICG for cancer treatment |
MoS2@AuNRs (1T-MoS2 nanosheets with AuNRs) [151] | Synergistic photothermal and photodynamic antibacterial therapy | E. coli bacteria |
PEG–MoS2–AuNP hybrids loaded with Ce6 [152] | Stepwise photothermal and photodynamic therapy for cancer treatment | Tumor cells |
Fe3O4@MoS2–Ag nanozyme [153] | Enhanced antibacterial therapy | E. coli bacteria |
NFs with AuAg alloyed NPs [154] | Photothermal-assisted catalytic reaction | Reduction of 4-NiP to 4-AP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, N.A.M.; Lee, S.; Kang, S.H. MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications. Nanomaterials 2025, 15, 111. https://doi.org/10.3390/nano15020111
Moussa NAM, Lee S, Kang SH. MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications. Nanomaterials. 2025; 15(2):111. https://doi.org/10.3390/nano15020111
Chicago/Turabian StyleMoussa, Nayra A. M., Seungah Lee, and Seong Ho Kang. 2025. "MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications" Nanomaterials 15, no. 2: 111. https://doi.org/10.3390/nano15020111
APA StyleMoussa, N. A. M., Lee, S., & Kang, S. H. (2025). MoS2–Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications. Nanomaterials, 15(2), 111. https://doi.org/10.3390/nano15020111