Single-Layer Full-Color Waveguide Display Based on a Broadband Efficient Meta-Grating
Abstract
1. Introduction
2. Design of the Meta-Grating In-Coupler
3. Design of the Grating Out-Coupler
4. Experiments and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Augmented reality |
FOV | Field of view |
FDTD | Finite difference time domain |
SEM | Scanning electron microscope |
DLP | Digital Light Processing |
PECVD | Plasma-enhanced chemical vapor deposition |
PR | Photoresist |
EBL | Electron beam lithography |
Cr-PVD | Chromium physical vapor deposition |
Cr-RM | Chromium removal |
RIE | Reactive ion etching |
HWP | Half-wave plate |
PBS | Polarizing beam splitter |
References
- Gao, Y.; Zhou, Y.; He, Q.; Wen, W.; Zhang, P. Improving Adult Vision Through Pathway-Specific Training in Augmented Reality. Adv. Sci. 2025, 12, 2415877. [Google Scholar] [CrossRef] [PubMed]
- Siew, C.Y.; Nee, A.Y.C.; Ong, S.K. Improving Maintenance Efficiency with an Adaptive AR-assisted Maintenance System. In Proceedings of the 2019 4th International Conference on Robotics, Control and Automation, Shenzhen, China, 19–21 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 74–78. [Google Scholar]
- Alessa, F.M.; Alhaag, M.H.; Al-harkan, I.M.; Nasr, M.M.; Kaid, H.; Hammami, N. Evaluating Physical Stress across Task Difficulty Levels in Augmented Reality-Assisted Industrial Maintenance. Appl. Sci. 2024, 14, 363. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, J.; Chen, R.; He, Q.; Li, Q.; Mei, X. AR-Assisted Guidance for Assembly and Maintenance of Avionics Equipment. Appl. Sci. 2024, 14, 1137. [Google Scholar] [CrossRef]
- Chen, H.; Feng, K.; Mo, C.; Cheng, S.; Guo, Z.; Huang, Y. Application of Augmented Reality in Engineering Graphics Education. In Proceedings of the 2011 IEEE International Symposium on IT in Medicine and Education, Guangzhou, China, 9–11 December 2011; Volume 2, pp. 362–365. [Google Scholar]
- Piyavichayanon, C.; Koga, M.; Hayashi, E.; Chumkamon, S. Collision-Aware AR Telemanipulation Using Depth Mesh. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Sapporo, Japan, 11–15 July 2022; pp. 386–392. [Google Scholar]
- Li, S.; Hendrich, N.; Liang, H.; Ruppel, P.; Zhang, C.; Zhang, J. A Dexterous Hand-Arm Teleoperation System Based on Hand Pose Estimation and Active Vision. IEEE Trans. Cybern. 2024, 54, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Cercenelli, L.; Tarsitano, A.; Marcelli, E. Augmented reality for orthopedic and maxillofacial oncological surgery: A systematic review focusing on both clinical and technical aspects. Front. Bioeng. Biotechnol. 2023, 11, 1276338. [Google Scholar] [CrossRef] [PubMed]
- Kassutto, S.M.; Baston, C.; Clancy, C. Virtual, Augmented, and Alternate Reality in Medical Education: Socially Distanced but Fully Immersed. ATS Sch. 2021, 2, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yang, Q.; Li, Y.; Yang, Z.; Wang, Z.; Liang, H.; Wu, S.-T. Waveguide-based augmented reality displays: Perspectives and challenges. eLight 2023, 3, 24. [Google Scholar] [CrossRef]
- Kress, B.C.; Chatterjee, I. Waveguide combiners for mixed reality headsets: A nanophotonics design perspective. Nanophotonics 2021, 10, 41–74. [Google Scholar] [CrossRef]
- Boo, H. Design and Measurements of High-Performance Metasurface Diffractive Waveguide Systems; UCLA: Los Angeles, CA, USA, 2023. [Google Scholar]
- Zhang, J.; Liu, S.; Zhang, W.; Jiang, S.; Ma, D.; Xu, L.; Yang, M.; Jiao, Q.; Tan, X. Study of the Dispersion Compensation Double-Layer Diffractive Optical Components Based on Metasurface and Grating, and Their Application in Augmented Reality Displays. Materials 2024, 17, 5291. [Google Scholar] [CrossRef] [PubMed]
- Shramkova, O.; Drazic, V.; Bourcin, G.; Varghese, B.; Blondé, L.; Allié, V. Metagrating solutions for full color single-plate waveguide combiner. EPJ Appl. Metamater. 2022, 9, 5. [Google Scholar] [CrossRef]
- Zhang, F.; Bao, H.; Pu, M.; Guo, Y.; Kang, T.; Li, X.; He, Q.; Xu, M.; Ma, X.; Luo, X. Dispersion-engineered spin photonics based on folded-path metasurfaces. Light Sci. Appl. 2025, 14, 198. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, X.; Surman, P.A.; Chen, Z.; Sun, X.W. An achromatic metasurface waveguide for augmented reality displays. Light Sci. Appl. 2025, 14, 94. [Google Scholar] [CrossRef]
- Shi, Z.; Khorasaninejad, M.; Huang, Y.-W.; Roques-Carmes, C.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Ding, Z.-W.; Tamagnone, M.; Chaudhary, K.; et al. Single-Layer Metasurface with Controllable Multiwavelength Functions. Nano Lett. 2018, 18, 2420–2427. [Google Scholar] [CrossRef]
- Zaidi, A.; Rubin, N.A.; Meretska, M.L.; Li, L.; Dorrah, A.H.; Park, J.-S.; Capasso, F. Metasurface-enabled compact, single-shot and complete Mueller matrix imaging. arXiv 2023, arXiv:2305.08704. [Google Scholar]
- Lee, T.; Kim, J.; Koirala, I.; Yang, Y.; Badloe, T.; Jang, J.; Rho, J. Nearly Perfect Transmissive Subtractive Coloration through the Spectral Amplification of Mie Scattering and Lattice Resonance. ACS Appl. Mater. Interfaces 2021, 13, 26299–26307. [Google Scholar] [CrossRef]
- Jang, J.; Badloe, T.; Yang, Y.; Lee, T.; Mun, J.; Rho, J. Spectral Modulation through the Hybridization of Mie-Scatterers and Quasi-Guided Mode Resonances: Realizing Full and Gradients of Structural Color. ACS Nano 2020, 14, 15317–15326. [Google Scholar] [CrossRef] [PubMed]
- McClung, A.; Mansouree, M.; Arbabi, A. At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces. Light Sci. Appl. 2020, 9, 93. [Google Scholar] [CrossRef]
- Boo, H.; Lee, Y.S.; Yang, H.; Matthews, B.; Lee, T.G.; Wong, C.W. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses. Sci. Rep. 2022, 12, 5832. [Google Scholar] [CrossRef] [PubMed]
- Habibighahfarokhi, F.; Sergaeva, O.; Angelis, C.D.; Rocco, D. Active magneto-optical metalens. Opt. Express 2025, 33, 34745–34755. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Zong, G.; Hu, W.; Lu, Y. Liquid crystal based tunable terahertz metadevices. J. Mater. 2025, 11, 100888. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wu, F.; Li, H.; Wang, M.; Xiang, Z.; Zheng, Z. Single-Layer Full-Color Waveguide Display Based on a Broadband Efficient Meta-Grating. Nanomaterials 2025, 15, 1493. https://doi.org/10.3390/nano15191493
Li Y, Wu F, Li H, Wang M, Xiang Z, Zheng Z. Single-Layer Full-Color Waveguide Display Based on a Broadband Efficient Meta-Grating. Nanomaterials. 2025; 15(19):1493. https://doi.org/10.3390/nano15191493
Chicago/Turabian StyleLi, Yong, Fei Wu, Huihui Li, Mengguang Wang, Zhiyuan Xiang, and Zhenrong Zheng. 2025. "Single-Layer Full-Color Waveguide Display Based on a Broadband Efficient Meta-Grating" Nanomaterials 15, no. 19: 1493. https://doi.org/10.3390/nano15191493
APA StyleLi, Y., Wu, F., Li, H., Wang, M., Xiang, Z., & Zheng, Z. (2025). Single-Layer Full-Color Waveguide Display Based on a Broadband Efficient Meta-Grating. Nanomaterials, 15(19), 1493. https://doi.org/10.3390/nano15191493