Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets
Abstract
1. Introduction
2. Experimental Details
2.1. Materials and Reagents
2.2. Synthesis of SiC via US Probe Sonication
2.3. Physical Characterization
3. Results
3.1. SiC Synthesis
3.2. Exfoliation Mechanism
3.3. Stabilization of 2D SiC Nanosheets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vashishtha, P.; Kofler, C.; Verma, A.K.; Giridhar, S.P.; Tollerud, J.O.; Dissanayake, N.S.L.; Gupta, T.; Sehrawat, M.; Aggarwal, V.; Mayes, E.L.; et al. Epitaxial Interface-Driven Photoresponse Enhancement in Monolayer WS2–MoS2 Lateral Heterostructures. Adv. Funct. Mater. 2025, e12962. [Google Scholar] [CrossRef]
- Hsueh, H.C.; Guo, G.Y.; Louie, S.G. Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B 2011, 84, 085404. [Google Scholar] [CrossRef]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A silicon carbide room-temperature single-photon source. Nat. Mater. 2013, 13, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lin, S.; Xu, Y.; Hakro, A.A.; Hasan, T.; Zhang, B.; Yu, B.; Luo, J.; Li, E.; Chen, H. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C 2013, 1, 2131–2135. [Google Scholar] [CrossRef]
- Eddy, C.R.; Gaskill, D.K. Silicon Carbide as a Platform for Power Electronics. Science 2009, 324, 1398–1400. [Google Scholar] [CrossRef] [PubMed]
- Qie, Y.; Wang, S.; Sun, Q. Three dimensional metallic porous SiC4 allotropes: Stability and battery applications. Nano Energy 2019, 63, 103862. [Google Scholar] [CrossRef]
- Hussain, T.; Niaei, A.H.F.; Searles, D.J.; Hankel, M. Three-Dimensional Silicon Carbide from Siligraphene as a High Capacity Lithium Ion Battery Anode Material. J. Phys. Chem. C 2019, 123, 27295–27304. [Google Scholar] [CrossRef]
- Dong, H.; Ji, Y.; Hou, T.; Li, Y. Two-dimensional siligraphenes as cathode catalysts for nonaqueous lithium-oxygen batteries. Carbon 2018, 126, 580–587. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Hussain, T.; Luo, W.; Ahuja, R. Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Nano Res. 2018, 11, 3802–3813. [Google Scholar] [CrossRef]
- Mpourmpakis, G.; Froudakis, G.E.; Lithoxoos, G.P.; Samios, J. SiC Nanotubes: A Novel Material for Hydrogen Storage. Nano Lett. 2006, 6, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Wachowicz, E.; Kiejna, A. Structure and energetics changes during hydrogenation of 4H-SiC{0001} surfaces: A DFT study. J. Phys. Condens. Matter 2012, 24, 385801. [Google Scholar] [CrossRef]
- Xu, B.; Yin, J.; Xia, Y.D.; Wan, X.G.; Liu, Z.G. Ferromagnetic and antiferromagnetic properties of the semihydrogenated SiC sheet. Appl. Phys. Lett. 2010, 96, 143111. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Wang, J.-T. Structural stabilities and electronic properties of fully hydrogenated SiC sheet. Phys. Lett. A 2011, 375, 2676–2679. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Nguyen, P.M.; Van Nguyen, H.; Chong, T.V.; Bubanja, V.; Van Vo, H. Atomistic Study of the Bandgap Engineering of Two-Dimensional Silicon Carbide by Hydrogenation. ACS Omega 2023, 8, 25424–25431. [Google Scholar] [CrossRef] [PubMed]
- Chabi, S.; Kadel, K. Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor. Nanomaterials 2020, 10, 2226. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Wei, C.; Zhang, Y.; Xiong, S.; Feng, J.; Qian, Y. Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Mater. 2020, 32, 115–150. [Google Scholar] [CrossRef]
- Maximenko, S.; Pirouz, P.; Sudarshan, T.S. Open Core Dislocations and Surface Energy of SiC. Mater. Sci. Forum 2006, 527–529, 439–442. [Google Scholar]
- Kimoto, T. Bulk and epitaxial growth of silicon carbide. Prog. Cryst. Growth Charact. Mater. 2016, 62, 329–351. [Google Scholar] [CrossRef]
- Chaussende, D.; Ohtani, N. 5-Silicon carbide. In Single Crystals of Electronic Materials; Woodhead Publishing: Sawston, UK, 2018; pp. 129–179. [Google Scholar] [CrossRef]
- Ha, M.-T.; Jeong, S.-M. A review of the simulation studies on the bulk growth of silicon carbide single crystals. J. Korean Ceram. Soc. 2022, 59, 153–179. [Google Scholar] [CrossRef]
- Susi, T.; Skákalová, V.; Mittelberger, A.; Kotrusz, P.; Hulman, M.; Pennycook, T.J.; Mangler, C.; Kotakoski, J.; Meyer, J.C. Computational insights and the observation of SiC nanograin assembly: Towards 2D silicon carbide. Sci. Rep. 2017, 7, 4399. [Google Scholar] [CrossRef]
- Chabi, S.; Guler, Z.; Brearley, A.J.; Benavidez, A.D.; Luk, T.S. The Creation of True Two-Dimensional Silicon Carbide. Nanomaterials 2021, 11, 1799. [Google Scholar] [CrossRef]
- Attaccalite, C.; Nguer, A.; Cannuccia, E.; Grüning, M. Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations. Phys. Chem. Chem. Phys. 2015, 17, 9533–9540. [Google Scholar] [CrossRef]
- Wu, I.J.; Guo, G.Y. Optical properties of SiC nanotubes: An ab initio study. Phys. Rev. B 2007, 76, 035343. [Google Scholar] [CrossRef]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef] [PubMed]
- Jomphoak, A.; Phokharatkul, D.; Eiamchai, P. Non-toxic precursor for chemical vapor deposition of borophene on Cu(111) surface. Mater. Chem. Phys. 2023, 299. [Google Scholar] [CrossRef]
- Zarkar, S.; Gupta, S.; Kandasubramanian, B. A critical analysis of emerging trends in borophene synthesis. J. Nanoparticle Res. 2024, 26, 207. [Google Scholar] [CrossRef]
- Yang, X.; Liu, R.; Liu, B.; Liu, M. Synthesis of Ultra-Thin Two-Dimensional SiC Using the CVD Method. Energies 2022, 15, 6351. [Google Scholar] [CrossRef]
- Bin Mujib, S.; Ren, Z.; Mukherjee, S.; Soares, D.M.; Singh, G. Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Mater. Adv. 2020, 1, 2562–2591. [Google Scholar] [CrossRef]
- Myronov, M.; Colston, G. Single step silicon carbide heteroepitaxy on a silicon wafer at reduced temperature. Mater. Today Commun. 2024, 38, 108312. [Google Scholar] [CrossRef]
- Yazdi, G.R.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6, 53. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, Y.; Yang, G.; Peng, X. New stable two dimensional silicon carbide nanosheets. J. Alloys Compd. 2021, 868, 159201. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Gao, M.; Kong, F.; Chen, H. Effectively Controlled Structures of Si-C Composites from Rice Husk for Oxygen Evolution Catalyst. Molecules 2023, 28, 6117. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Jayanthi, C.S.; Wu, S.Y. Geometric and electronic structures of graphitic-like and tubular silicon carbides: Ab-initio studies. Phys. Rev. B 2010, 82, 075407. [Google Scholar] [CrossRef]
- Jian, J.; Sun, J. A Review of Recent Progress on Silicon Carbide for Photoelectrochemical Water Splitting. Sol. RRL 2020, 4, 2000111. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Z.; Kutana, A.; Yakobson, B.I. Predicting Two-Dimensional Silicon Carbide Monolayers. ACS Nano 2015, 9, 9802–9809. [Google Scholar] [CrossRef]
- Hofmann, M.; Hsieh, Y.-P.; Liang, C.-T.; Chen, Y.-F. Size effects on phonon localization and Raman enhancement in silicon nanotips. J. Raman Spectrosc. 2012, 44, 81–85. [Google Scholar] [CrossRef]
- Wärnheim, A.; Kotov, N.; Dobryden, I.; Leggieri, R.T.; Edvinsson, C.; Heydari, G.; Sundell, P.-E.; Deltin, T.; Johnson, C.M.; Persson, D.; et al. Nanomechanical and nano-FTIR analysis of polyester coil coatings before and after artificial weathering experiments. Prog. Org. Coat. 2024, 190, 108355. [Google Scholar] [CrossRef]
- Vogel, C.; Hermann, P.; Kästner, B.; Adamczyk, B.; Hoehl, A.; Ulm, G.; Adam, C. Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy. Corros. Sci. 2018, 131, 324–329. [Google Scholar] [CrossRef]
- Bux, S.K.; Blair, R.G.; Gogna, P.K.; Lee, H.; Chen, G.; Dresselhaus, M.S.; Kaner, R.B.; Fleurial, J. Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Adv. Funct. Mater. 2009, 19, 2445–2452. [Google Scholar] [CrossRef]
- Inoue, A.; Fan, C. High-Strength Bulk Nanostructure Alloys Consisting of Compound and Amorphous Phases. MRS Proc. 1998, 554, 143–148. [Google Scholar] [CrossRef]
- Yang, G.; Wu, Y.; Ma, S.; Fu, Y.; Gao, D.; Zhang, Z.; Li, J. Defect-induced room temperature ferromagnetism in silicon carbide nanosheets. Superlattices Microstruct. 2018, 119, 19–24. [Google Scholar] [CrossRef]
- Chabi, S.; Chang, H.; Xia, Y.; Zhu, Y. From graphene to silicon carbide: Ultrathin silicon carbide flakes. Nanotechnology 2016, 27, 075602. [Google Scholar] [CrossRef]
- Lin, S.S. Light-Emitting Two-Dimensional Ultrathin Silicon Carbide. J. Phys. Chem. C 2012, 116, 3951–3955. [Google Scholar] [CrossRef]
- Polley, C.M.; Fedderwitz, H.; Balasubramanian, T.; Zakharov, A.A.; Yakimova, R.; Bäcke, O.; Ekman, J.; Dash, S.P.; Kubatkin, S.; Lara-Avila, S. Bottom-Up Growth of Monolayer Honeycomb SiC. Phys. Rev. Lett. 2023, 130, 076203. [Google Scholar] [CrossRef]
- Qiu, J.; Fu, H.; Xu, Y.; Oreshkin, A.I.; Shao, T.; Li, H.; Meng, S.; Chen, L.; Wu, K. Ordered and Reversible Hydrogenation of Silicene. Phys. Rev. Lett. 2015, 114, 126101. [Google Scholar] [CrossRef]
- Hussain, T.; Chakraborty, S.; De Sarkar, A.; Johansson, B.; Ahuja, R. Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Appl. Phys. Lett. 2014, 105, 123903. [Google Scholar] [CrossRef]
- Tang, J.; Yin, Q.; Wang, Q.; Li, Q.; Wang, H.; Xu, Z.; Yao, H.; Yang, J.; Zhou, X.; Kim, J.-K.; et al. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale 2019, 11, 10984–10991. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Chen, T.; Bok, T.; Song, G.; Ma, J.; Hwang, C.; Luo, L.; Song, H.-K.; Cho, J.; Wang, C.; et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 2018, 9, 2924. [Google Scholar] [CrossRef]
Method | Precursor and Solvent | Total Synthesis Time | Cleaning | Size (nm) | Height (nm) | Ref. |
---|---|---|---|---|---|---|
Liquid exfoliation | 6H–SiC powder/DMF | 16 h | 1000 rpm; 30 min | 200 | 3.5 | [42] |
Carbothermal | 3D graphene foam/SiO | N/A | Not reported | 2000 | 3 | [43] |
Liquid exfoliation | a-SiC/NMP | 24 h | 9000 rpm; 30 min | 10 | 2 | [44] |
Liquid exfoliation | 6H–SiC powder/DMF | 24 h | 1000 rpm; 5 min | 200–2000 | 0.28 | [22] |
Epitaxial growth | 4H–SiC substrate/TaC film | 10 min | N/A | N/A | 0.28 | [45] |
Liquid exfoliation | 6H–SiC powder/IPA | 4 h | 13,000 rpm; 30 min | 2000 | 5 nm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Vázquez, E.F.; Hernández-Rodríguez, Y.M.; Solorza-Feria, O.; Cigarroa-Mayorga, O.E. Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets. Nanomaterials 2025, 15, 1480. https://doi.org/10.3390/nano15191480
Vázquez-Vázquez EF, Hernández-Rodríguez YM, Solorza-Feria O, Cigarroa-Mayorga OE. Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets. Nanomaterials. 2025; 15(19):1480. https://doi.org/10.3390/nano15191480
Chicago/Turabian StyleVázquez-Vázquez, Eric Fernando, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria, and Oscar Eduardo Cigarroa-Mayorga. 2025. "Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets" Nanomaterials 15, no. 19: 1480. https://doi.org/10.3390/nano15191480
APA StyleVázquez-Vázquez, E. F., Hernández-Rodríguez, Y. M., Solorza-Feria, O., & Cigarroa-Mayorga, O. E. (2025). Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets. Nanomaterials, 15(19), 1480. https://doi.org/10.3390/nano15191480