Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphology of InSb NWs
2.1.1. Effect of Temperature and Source Weight on InSb NW Morphology
2.1.2. Growth Time Dependence of InSb NW Morphology
2.2. Relationship Between NW Morphology and Growth Parameters
2.2.1. Growth Temperature Range and the State of Catalytic Particles (CPs)
2.2.2. Trends of Temperature-Dependent NW Length and Tapering Factor
2.2.3. Trends of Source Amount-Dependent NW Length and Tapering Factor
2.2.4. Trends of Growth Duration-Dependent NW Length and Tapering Factor
2.3. Optimized Growth Conditions for InSb NWs
2.4. Electronic Transport in Single InSb Nanowires
3. Suggestions for Future Work
4. Summary and Conclusions
5. Experimental Section
5.1. InSb Nanowire Growth (CVD, Two-Tube Configuration)
5.2. Post-Growth Handling
5.3. Morphology and Structural Characterization
5.4. Electrical Device Fabrication (NW-FET)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bjork, M.T.; Ohlsson, B.J.; Sass, T.; Persson, A.I.; Thelander, C.; Magnusson, M.H.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 80, 1058. [Google Scholar] [CrossRef]
- Cui, Y.; Lieber, C.M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291, 851. [Google Scholar] [CrossRef] [PubMed]
- Gudiksen, M.S.; Lauhon, L.J.; Wang, J.; Smith, D.C.; Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ozkan, C.S. Multisegment Nanowire Sensors for the Detection of DNA Molecules. Nano Lett. 2008, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Bryllert, T.; Wernersson, L.E.; Froberg, L.E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 2006, 27, 323. [Google Scholar] [CrossRef]
- Novotny, C.J.; Yu, E.T.; Yu, P.K.L. InP Nanowire/Polymer Hybrid Photodiode. Nano Lett. 2008, 8, 775. [Google Scholar] [CrossRef]
- Yang, C.; Chandran, K.S.R. A critical review of silicon nanowire electrodes and their energy storage capacities in Li-ion cells. RSC Adv. 2023, 13, 3947–3957. [Google Scholar] [CrossRef]
- Wu, L.; Hu, Z.; Liang, L.; Hu, R.; Wang, J.; Yu, L. Step-necking growth of silicon nanowire channels for high performance field effect transistors. Nat. Commun. 2025, 6, 965. [Google Scholar] [CrossRef]
- Mauthe, S.; Baumgartner, Y.; Sousa, M.; Ding, Q.; Rossell, M.D.; Schenk, A.; Czornomaz, L.; Moselund, K.E. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat. Commun. 2020, 11, 4565. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Tateno, K.; Gotoh, H.; Nakano, H. Parallel-aligned GaAs nanowires with 〈110〉 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor–liquid–solid mode. Nanotechnology 2010, 21, 095607. [Google Scholar] [CrossRef]
- Brus, L. The Luminescence of Silicon Materials: Chains, Sheets, Nanocrystals, Nanowires, Microcrystals, and Porous Silicon. J. Phys. Chem. 1994, 98, 3575. [Google Scholar] [CrossRef]
- Yorikawa, H.; Uchida, H.; Muramatsu, S. Energy gap of nanoscale Si rods. J. Appl. Phys. 1996, 79, 3619. [Google Scholar] [CrossRef]
- Mozos, J.L.; Machado, E.; Hernandez, E.; Ordejon, P. Nanotubes and nanowires: The effect of impurities and defects on their electronic properties. Int. J. Nanotechnol. 2005, 2, 114. [Google Scholar] [CrossRef]
- Persson, A.I.; Froberg, L.E.; Jeppesen, S.; Bjork, M.T.; Samuelson, L. Surface Diffusion Effects on Growth of Nanowires by Chemical Beam Epitaxy. J. Appl. Phys. 2007, 101, 6. [Google Scholar] [CrossRef]
- Dick, K.A.; Deppert, K.; Samuelson, L.; Seifert, W. Aspect ratio dependent behavior in growth of InAs nanowires using gas-source molecular beam epitaxy. J. Cryst. Growth 2006, 297, 326. [Google Scholar] [CrossRef]
- Ma, D.D.D.; Lee, C.S.; Au, F.C.K.; Tong, S.Y.; Lee, S.T. Small-Diameter Silicon Nanowire Surfaces. Science 2003, 299, 1874. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xie, P.; Lieber, C.M. Nanowire Transistor Performance Limits and Applications. IEEE Trans. Electron Devices 2008, 55, 2859. [Google Scholar] [CrossRef]
- Khayer, M.A.; Lake, R.K. Drive Currents and Leakage Currents in InSb and InAs Nanowire and Carbon Nanotube Band-to-Band Tunneling FETs. IEEE Electron Device Lett. 2009, 30, 1257. [Google Scholar] [CrossRef]
- Badawy, G.; Bakkers, E.P. Electronic Transport and Quantum Phenomena in Nanowires. Chem. Rev. 2024, 124, 2419–2440. [Google Scholar] [CrossRef]
- Jensen, L.E.; Bjork, M.T.; Jeppesen, S.; Persson, A.I.; Ohlsson, B.J.; Samuelson, L. Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires. Nano Lett. 2004, 4, 1961. [Google Scholar] [CrossRef]
- Dayeh, S.A.; Yu, E.T.; Wang, D. III–V Nanowire Growth Mechanism: V/III Ratio and Temperature Effects. Nano Lett. 2007, 7, 2486. [Google Scholar] [CrossRef]
- Tchernycheva, M.; Sartel, C.; Cirlin, G.; Travers, L.; Patriarche, G.; Harmand, J.C.; Le Si Dang, J.; Renard, J.; Gayral, B.; Nevou, L.; et al. Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: Structural and optical characterization. Nanotechnology 2007, 18, 385306. [Google Scholar] [CrossRef]
- Park, H.D.; Prokes, S.M.; Cammarata, R.C. Growth of epitaxial InAs nanowires in a simple closed system. Appl. Phys. Lett. 2005, 87, 063110. [Google Scholar] [CrossRef]
- Steinvall, S.E.; Johansson, J.; Lehmann, S.; Tornberg, M.; Jacobsson, D.; Dick, K.A. Visualizing the Mechanism Switching in High-Temperature Au-Catalyzed InAs Nanowire Growth. Cryst. Growth Des. 2023, 23, 6228–6232. [Google Scholar] [CrossRef]
- Arif, O.; Zannier, V.; Dubrovskii, V.; Shtrom, I.; Rossi, F.; Beltram, F.; Sorba, L. Growth of Self-Catalyzed InAs/InSb Axial Heterostructured Nanowires: Experiment and Theory. Nanomaterials 2020, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Roccapriore, K.; Algarni, Z.; Salloom, R.; Golden, T.; Philipose, U. Structure and Electronic Properties of InSb Nanowires Grown in Flexible Polycarbonate Membranes. Nanomaterials 2019, 9, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lugani, L.; Ercolani, D.; Sorba, L.; Sibirev, N.; Timofeeva, M.; Dubrovskii, V. Modeling of InAs–InSb nanowires grown by Au-assisted chemical beam epitaxy. Nanotechnology 2012, 23, 095602. [Google Scholar] [CrossRef]
- Badawy, G.; Gazibegović, S.; Borsoi, F.; Heedt, S.; Wang, C.; Koelling, S.; Verheijen, M.; Kouwenhoven, L.; Kouwenhoven, L.; Bakkers, E. High Mobility Stemless InSb Nanowires. Nano Lett. 2019, 19, 3575–3582. [Google Scholar] [CrossRef]
- Dubrovskii, V. Reconsideration of Nanowire Growth Theory at Low Temperatures. Nanomaterials 2021, 11, 2378. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor–Liquid–Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4, 89. [Google Scholar] [CrossRef]
- Seifert, W.; Borgstrom, M.; Deppert, K.; Dick, K.A.; Johansson, J.; Larsson, M.W.; Martensson, T.; Skold, N.; Svensson, C.P.T.; Wacaser, B.A.; et al. Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 2004, 272, 211. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Harmand, J.C.; Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Cirlin, G.E.; Tchernycheva, M.; Harmand, J.C.; Ustinov, V.M. Shape modification of III-V nanowires: The role of nucleation on sidewalls. Phys. Rev. E 2008, 77, 031606. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.A.; Deppert, K.; Martensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the Vapor−Liquid−Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires. Nano Lett. 2005, 5, 761. [Google Scholar] [CrossRef] [PubMed]
- Lensch-Falk, J.L.; Hemesath, E.R.; Perea, D.E.; Lauhon, L.J. Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem. 2009, 19, 849. [Google Scholar] [CrossRef]
- Persson, A.I.; Larsson, M.W.; Stenstrom, S.; Ohlsson, B.J.; Samuelson, L.; Wallenberg, L.R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677. [Google Scholar] [CrossRef] [PubMed]
- Kolasinski, K.W. Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr. Opin. Solid State Mater. Sci. 2006, 10, 182. [Google Scholar] [CrossRef]
- Mohammad, S.N. Substrate-mediated diffusion-induced growth of single-crystal nanowires. J. Chem. Phys. 2009, 131, 204703. [Google Scholar] [CrossRef]
- Kawashima, T.; Mizutani, T.; Nakagawa, T.; Torii, H.; Saitoh, T.; Komori, K.; Fujii, M. Control of surface migration of gold particles on Si nanowires. Nano Lett. 2008, 8, 362. [Google Scholar] [CrossRef]
- Dick, K.A.; Deppert, K.; Karlsson, L.S.; Wallenberg, L.R.; Samuelson, L.; Seifert, W. A New Understanding of Au-Assisted Growth of III–V Semiconductor Nanowires. Adv. Funct. Mater. 2005, 15, 1603. [Google Scholar] [CrossRef]
- Dick, K.A. A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Prog. Cryst. Growth Charact. Mater. 2008, 54, 138. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Cirlin, G.E.; Soshnikov, I.P.; Chen, W.H.; Larde, R.; Cadel, E.; Pareige, P.; Xu, T.; Grandidier, B.; et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B 2009, 79, 205316. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Cirlin, G.E.; Harmand, J.C.; Ustinov, V.M. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. Phys. Rev. E 2006, 73, 021603. [Google Scholar] [CrossRef]
- Cai, Y.; Wong, T.L.; Chan, S.K.; Sou, I.K.; Su, D.S.; Wang, N. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy. Appl. Phys. Lett. 2008, 93, 233107. [Google Scholar] [CrossRef]
- Plante, M.C.; LaPierre, R.R. Analytical description of the metal-assisted growth of III–V nanowires: Axial and radial growths. J. Appl. Phys. 2009, 105, 114304. [Google Scholar] [CrossRef]
- Mohammad, S.N. Fundamental issues in III–V nanowire growth by metal–organic chemical vapor deposition: A critical review. J. Vac. Sci. Technol. B 2010, 28, 329. [Google Scholar] [CrossRef]
- Ashley, T.; Gordon, N.T. Higher-operating-temperature high-performance infrared focal plane arrays. Quantum Sens. Nanophotonic Devices 2004, 5359, 89. [Google Scholar]
- Hongzhi, C.; Xuhui, S.; Lai, K.W.C.; Meyyappan, M.; Ning, X. Infrared detection using an InSb nanowire. In Proceedings of the 2009 IEEE Nanotechnology Materials and Devices Conference (NMDC), Traverse City, MI, USA, 2–5 June 2009; p. 212. [Google Scholar]
- Seol, J.H.; Moore, A.L.; Saha, S.K.; Zhou, F.; Shi, L.; Ye, Q.L.; Scheffler, R.; Mingo, N.; Yamada, T. Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. J. Appl. Phys. 2007, 101, 023706. [Google Scholar] [CrossRef]
- Riikonen, J.; Tuomi, T.; Lankinen, A.; Sormunen, J.; Saynatjoki, A.; Knuuttila, L.; Lipsanen, H.; McNally, P.J.; O’Reilly, L.; Danilewsky, A.; et al. Low temperature growth GaAs on Ge. J. Mater. Sci. Mater. Electron. 2005, 16, 449. [Google Scholar] [CrossRef]
- Yang, Y.W.; Li, L.; Huang, X.H.; Ye, M.; Wu, Y.C.; Li, G.H. Thermoelectric properties of Bi nanowire arrays embedded in anodic alumina membranes. Appl. Phys. A Mater. Sci. Process. 2006, 84, 7. [Google Scholar] [CrossRef]
- Zhang, X.R.; Hao, Y.F.; Meng, G.W.; Zhang, L.D. Fabrication of Highly Ordered InSb Nanowire Arrays by Electrodeposition in Porous Anodic Alumina Membranes. J. Electrochem. Soc. 2005, 152, C664. [Google Scholar] [CrossRef]
- Caroff, P.; Wagner, J.B.; Dick, K.A.; Nilsson, H.A.; Jeppsson, M.; Deppert, K.; Samuelson, L.; Wallenberg, L.R.; Wernersson, L.E. High-Quality InAs/InSb Nanowire Heterostructures Grown by Metal–Organic Vapor-Phase Epitaxy. Small 2008, 4, 878. [Google Scholar] [CrossRef] [PubMed]
- Ercolani, D.; Rossi, F.; Li, A.; Roddaro, S.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 2009, 20, 505605. [Google Scholar] [CrossRef] [PubMed]
- Park, H.D.; Prokes, S.M.; Twigg, M.E.; Ding, Y.; Wang, Z.L. Growth of InSb nanowires by metal-organic vapor phase epitaxy. J. Cryst. Growth 2007, 304, 399. [Google Scholar]
- Caroff, P.; Messing, M.E.; Borg, B.M.; Dick, K.A.; Deppert, K.; Wernersson, L.E. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 2009, 20, 495606. [Google Scholar] [CrossRef]
- Khan, M.I.; Penchev, M.; Jing, X.Y.; Wang, X.; Bozhilov, K.N.; Ozkan, M.; Ozkan, C.S. Electrochemical Growth of InSb Nanowires and Report of a Single Nanowire Field Effect Transistor. J. Nanoelectron. Optoelectron. 2008, 3, 199. [Google Scholar] [CrossRef][Green Version]
- Vogel, A.T.; de Boor, J.; Becker, M.; Wittemann, J.V.; Mensah, S.L.; Werner, P.; Schmidt, V. Ag-assisted CBE growth of ordered InSb nanowire arrays. Nanotechnology 2011, 22, 015605. [Google Scholar] [CrossRef]
- Paul, R.K.; Penchev, M.; Zhong, J.B.; Ozkan, M.; Ghazinejad, M.; Jing, X.Y.; Yengel, E.; Ozkan, C.S. Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors. Mater. Chem. Phys. 2010, 121, 397. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, G.M.; Slattery, P.; Zhang, J.Z.; Li, Y. Ultrasmall Single-Crystal Indium Antimonide Nanowires. Cryst. Growth Des. 2010, 10, 2479. [Google Scholar] [CrossRef]
- Philipose, U.; Sapkota, G.; Salfi, J.; Ruda, H.E. Influence of growth temperature on the stoichiometry of InSb nanowires grown by vapor phase transport. Semicond. Sci. Technol. 2010, 25, 075004. [Google Scholar] [CrossRef]
- Rossi, M.; van Schijndel, T.A.; Lueb, P.; Badawy, G.; Jung, J.; Peeters, W.H.; Kölling, S.; Moutanabbir, O.; Verheijen, M.A.; Bakkers, E.P. Stemless InSb nanowire networks and nanoflakes grown on InP. Nanotechnology 2024, 35, 415602. [Google Scholar] [CrossRef]
- Zhou, F.; Moore, A.L.; Pettes, M.T.; Lee, Y.; Seol, J.H.; Ye, Q.L.; Rabenberg, L.; Shi, L. Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires. J. Phys. D-Appl. Phys. 2010, 43, 025406. [Google Scholar] [CrossRef]
- Dick, K.A.; Caroff, P.; Bolinsson, J.; Messing, M.E.; Johansson, J.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 2010, 25, 024009. [Google Scholar] [CrossRef]
- Ross, F.M. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 2010, 114501, 21. [Google Scholar] [CrossRef]
- Irrera, A.; Pecora, E.F.; Priolo, F. Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology 2009, 20, 135601. [Google Scholar] [CrossRef]
- Nebol’sin, V.A.; Shchetinin, A.A. Role of Surface Energy in the Vapor–Liquid–Solid Growth of Silicon. Inorg. Mater. 2003, 39, 899. [Google Scholar] [CrossRef]
- Ross, F.M.; Tersoff, J.; Reuter, M.C. Sawtooth Faceting in Silicon Nanowires. Phys. Rev. Lett. 2005, 95, 146104. [Google Scholar] [CrossRef]
- Ghalamestani, S.G.G.; Ek, M.; Ghasemi, M.; Caroff, P.; Johansson, J.; Dick, K.A. Morphology and Composition Controlled GaxIn1−xSb Nanowires: Understanding Ternary Antimonide Growth. Nanoscale 2014, 6, 1086–1092. [Google Scholar] [CrossRef]
- Tchernycheva, M.; Cirlin, G.E.; Patriarche, G.; Travers, L.; Zwiller, V.; Perinetti, U.; Harmand, J.C. Growth and Characterization of InP Nanowires with InAsP Insertions. Nano Lett. 2007, 7, 1500. [Google Scholar] [CrossRef] [PubMed]
- Kodambaka, S.; Tersoff, J.; Reuter, M.C.; Ross, F.M. Germanium Nanowire Growth Below the Eutectic Temperature. Science 2007, 316, 729. [Google Scholar] [CrossRef]
- Gao, L.; Woo, R.L.; Liang, B.; Pozuelo, M.; Prikhodko, S.; Jackson, M.; Goel, N.; Hudait, M.K.; Huffaker, D.L.; Goorsky, M.S.; et al. Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon. Nano Lett. 2009, 9, 2223. [Google Scholar] [CrossRef] [PubMed]
- Wunnicke, O. Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 2006, 89, 083102. [Google Scholar] [CrossRef]
- Khanal, D.R.; Wu, J. Gate Coupling and Charge Distribution in Nanowire Field Effect Transistors. Nano Lett. 2007, 7, 2778–2783. [Google Scholar] [CrossRef]
- Ryu, Y.K.; Chiesa, M.; García, R. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 2013, 24, 315205. [Google Scholar] [CrossRef]
- Mallem, S.P.R.; Puneetha, P.; Choi, Y.; Baek, S.M.; An, S.J.; Im, K.-S. Temperature-Dependent Carrier Transport in GaN Nanowire Wrap-Gate Transistor. Nanomaterials 2023, 13, 1629. [Google Scholar] [CrossRef]
- Johansson, S.; Memisevic, E.; Wernersson, L.-E.; Lind, E. High-Frequency Gate-All-Around Vertical InAs Nanowire MOSFETs on Si Substrates. IEEE Electron Device Lett. 2014, 35, 518–520. [Google Scholar] [CrossRef]
- Verma, I.; Zannier, V.; Rossi, F.; Ercolani, D.; Beltram, F.; Sorba, L. Morphology control of single-crystal InSb nanostructures by tuning the growth parameters. Nanotechnology 2020, 31, 384002. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dong, A.; Buhro, W.E. Solution–Liquid–Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires. Chem. Rev. 2016, 116, 10888–10933. [Google Scholar] [CrossRef]
- Badawy, G.; Zhang, B.; Rauch, T.; Momand, J.; Koelling, S.; Jung, J.; Gazibegovic, S.; Moutanabbir, O.; Kooi, B.J.; Botti, S.; et al. Electronic Structure and Epitaxy of CdTe Shells on InSb Nanowires. Adv. Sci. 2022, 9, e2105722. [Google Scholar] [CrossRef]
- Hussain, G.; Warda, K.; Cuono, G.; Autieri, C. Density Functional Theory Study of the Spin–Orbit Insulating Phase in SnTe Cubic Nanowires: Implications for Topological Electronics. ACS Appl. Nano Mater. 2024, 7, 8044–8052. [Google Scholar] [CrossRef]
- Du, Y.; Du, D. Discovery of optimal silver nanowires synthesis conditions using machine learning. Mater. Lett. 2024, 377, 137399. [Google Scholar] [CrossRef]
- Deng, M.; Yu, C.; Huang, G.; Caroff, P.; Xu, H. Quantum transport in an ambipolar InSb nanowire quantum dot device. Phys. Rev. B 2025, 111, 115409. [Google Scholar] [CrossRef]
- Lei, Z.; Cheah, E.; Schott, R.; Lehner, C.A.; Zeitler, U.; Wegscheider, W.; Ihn, T.; Ensslin, K. Quantum transport in InSb quantum well devices: Progress and perspective. J. Phys. Condens. Matter 2024, 36, 383001. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Lin, J.; Penchev, M.; Ozkan, M.; Ozkan, C.S. Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes. Nanomaterials 2025, 15, 1436. https://doi.org/10.3390/nano15181436
Zhong J, Lin J, Penchev M, Ozkan M, Ozkan CS. Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes. Nanomaterials. 2025; 15(18):1436. https://doi.org/10.3390/nano15181436
Chicago/Turabian StyleZhong, Jiebin, Jian Lin, Miroslav Penchev, Mihrimah Ozkan, and Cengiz S. Ozkan. 2025. "Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes" Nanomaterials 15, no. 18: 1436. https://doi.org/10.3390/nano15181436
APA StyleZhong, J., Lin, J., Penchev, M., Ozkan, M., & Ozkan, C. S. (2025). Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes. Nanomaterials, 15(18), 1436. https://doi.org/10.3390/nano15181436