The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Catalyst Preparation
2.3. Instruments and Methods of Characterization
2.4. Catalytic Performance
2.4.1. Evaluation of Catalysis Efficiency
2.4.2. Catalytic Tests—Temperature Ramp
2.4.3. Catalysis Conditions for Stability Tests
- (1)
- The amount of catalyst samples used was 100 mg NiO/Ni/Ni(OH)x + 150 mg SG;
- (2)
- Activation of the catalyst was performed at 300 °C, 1 bar, for 2 h using a pure H2 atmosphere;
- (3)
- Catalysis was conducted at 450 °C, 30 bar, for 21 h, but two samples (Ni(a) and NiO600(b)) were also tested for 42 h; CO2 flow was adjusted to 6 mL/min, H2 flow was adjusted to 24 mL/min (ratio of H2 and CO2 4:1), that of He was adjusted 36 mL/min (55% of the gaseous mixture).
3. Results and Discussion
3.1. TG/DSC Study of Ni-Based Precursors
3.2. XRD Analysis of Precursors and Precatalysts
3.3. Temperature-Programmed H2 Reduction (TPR-H2) and Temperature-Programmed Desorption of CO2 (TPD-CO2) Characterization of Precatalysts
3.4. Electron Microscopy of the Ni-Based Catalysts
3.4.1. SEM/TEM Before Catalysis
3.4.2. SEM After Catalysis
3.5. Surface Area and Pore Volume Characterization
3.6. X-Ray Photoelectron Spectroscopy of Post-Catalytic Samples
3.7. Results of Catalytic Hydrogenation of CO2 Using Different Ni-Based Catalysts
3.7.1. Preliminary Catalytic Tests Using a Temperature Ramp
3.7.2. Catalytic Efficiency of Catalysts with a Ni(a) Precursor (a-Group Catalysts)
3.7.3. Catalytic Efficiency of Catalysts with a Ni(OH)2(b) Precursor (b-Group Catalysts)
3.7.4. Catalytic Efficiency of Catalysts with a Ni(OH)x(c) Precursor (c-Group Catalysts)
3.7.5. Stability Tests of Ni-Based Catalysts
3.8. Summary of Catalytic Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaiman, N.F.H.N.; Shaari, N. Review on flower-like structure nickel-based catalyst in fuel cell application. J. Ind. Eng. Chem. 2023, 119, 1–76. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C. The role of promoters in metallic nickel catalysts used for green diesel production: A critical review. Fuel Process. Technol. 2023, 244, 107690. [Google Scholar] [CrossRef]
- Ghatak, A.; Das, M. The Recent Progress on Supported and Recyclable Nickel Catalysts towards Organic Transformations: A Review. ChemistrySelect 2021, 6, 3656–3682. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Zhang, J.; Yang, J.H. Supported Nickel-based Catalysts for Heterogeneous Hydrogenation of Aromatics. ChemistrySelect 2023, 8, e202302787. [Google Scholar] [CrossRef]
- Shi, D.C.; Wojcieszak, R.; Paul, S.; Marceau, E. Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation? Catalysts 2019, 9, 451. [Google Scholar] [CrossRef]
- Lieber, E.; Morritz, F.L. The Uses of Raney Nickel. Adv. Catal. 1953, 5, 417–455. [Google Scholar] [CrossRef]
- Sun, Z.H.; Zhang, Z.H.; Yuan, T.Q.; Ren, X.H.; Rong, Z.M. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal. 2021, 11, 10508–10536. [Google Scholar] [CrossRef]
- Bonomo, M.; Dini, D.; Decker, F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) with Nanostructured Morphology for Photoconversion Applications. Front. Chem. 2018, 6, 601. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Rai, A.; Yadav, R.; Sinha, A.K. Glucose hydrogenation to sorbitol over unsupported mesoporous Ni/NiO catalyst. Mol. Catal. 2018, 451, 186–191. [Google Scholar] [CrossRef]
- Liu, L.D.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W.J.; Duan, L.; Yang, X.; Yu, X.Y.; Han, X.; Liu, N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B-Environ. 2019, 254, 166–173. [Google Scholar] [CrossRef]
- Gong, S.Y.; Wang, A.Q.; Wang, Y.; Liu, H.D.; Han, N.; Chen, Y.F. Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. Acs Appl. Nano Mater. 2020, 3, 597–607. [Google Scholar] [CrossRef]
- Bikbashev, A.; Stryšovský, T.; Kajabová, M.; Kovářová, Z.; Prucek, R.; Panáček, A.; Kašlík, J.; Fodor, T.; Cserháti, C.; Erdélyi, Z.; et al. NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules 2024, 29, 4838. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Liu, H.; Wei, N. Synthesis of original spherical α-Ni(OH)2 architectures by microwave-assisted hydrothermal method and their in situ thermal conversion to NiO. Superlattices Microstruct. 2012, 51, 232–238. [Google Scholar] [CrossRef]
- Morrow, G.W. Nickel(II) Peroxide. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Khalaji, A.D.; Grivani, G.; Izadi, S.; Ebadi, M. Facile synthesis of Ni/NiO nanocomposites via thermal decomposition. J. Nanoanalysis 2018, 5, 115–120. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, Y.; Bao, J.H.; Chen, H.L. Preparation of NiO nanoparticles via thermal decomposition of nickel acetate coated by CDs. Chin. J. Inorg. Chem. 2006, 22, 952–956. [Google Scholar]
- Numan, A.; Duraisamy, N.; Omar, F.S.; Gopi, D.; Ramesh, K.; Ramesh, S. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application. Prog. Nat. Sci.-Mater. Int. 2017, 27, 416–423. [Google Scholar] [CrossRef]
- Ata, S.; Tabassum, A.; Din, M.I.; Fatima, M.; Ghafoor, S.; Islam, A.; Ahad, A.; Bhatti, M.A. Novel Sonochemical Single Step Fabrication of NiO Nanoparticles. Dig. J. Nanomater. Biostruct. 2016, 11, 65–80. [Google Scholar]
- Ali, M.; Remalli, N.; Gedela, V.; Padya, B.; Jain, P.K.; Al-Fatesh, A.; Rana, U.A.; Srikanth, V.V.S.S. Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition. Solid State Sci. 2017, 64, 34–40. [Google Scholar] [CrossRef]
- Chandrakala, M.; Bharath, S.R.; Maiyalagan, T.; Arockiasamy, S. Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys. 2017, 201, 344–353. [Google Scholar] [CrossRef]
- Singh, Y.; Sodhi, R.S.; Singh, P.P.; Kaushal, S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater. Adv. 2022, 3, 4991–5000. [Google Scholar] [CrossRef]
- Uddin, S.; Bin Safdar, L.; Anwar, S.; Iqbal, J.; Laila, S.; Abbasi, B.A.; Saif, M.S.; Ali, M.; Rehman, A.; Basit, A.; et al. Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities. Molecules 2021, 26, 1548. [Google Scholar] [CrossRef]
- Ningsih, S.K.W. Synthesis and Characterization of NiO Nanopowder by Sol-Gel Process. In Proceedings of the 5th International Conference on Mathematics and Natural Sciences, Bandung, Indonesia, 2–3 November 2014. [Google Scholar] [CrossRef]
- Zorkipli, N.N.M.; Kaus, N.H.M.; Mohamad, A.A. Synthesis of NiO Nanoparticles Through Sol-gel Method. In Proceedings of the 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), Penang, Malaysia, 4–5 August 2015; pp. 626–631. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Y.; Zhao, W.Y.; Pan, D.Q.; Zhu, C.T.; Lin, F.Y.; Guo, X.Y. Solvothermal Preparation and Characterization of Nano-nickel Oxide. ACTA Chim. Sin. 2019, 77, 447–454. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.R.; Liu, Y.Y.; Li, J.; Cui, H.T. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 2019, 30, 861–868. [Google Scholar] [CrossRef]
- Poimenidis, I.A.; Lykaki, M.; Moustaizis, S.; Loukakos, P.; Konsolakis, M. One-step solvothermal growth of NiO nanoparticles on nickel foam as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2023, 305, 128007. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.X.; Li, H.L.; Liu, Y.; Zhang, H.Y.; Li, T.D. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl. Surf. Sci. 2015, 328, 525–530. [Google Scholar] [CrossRef]
- Abbas, S.A.; Jung, K.D. Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim. Acta 2016, 193, 145–153. [Google Scholar] [CrossRef]
- Wang, J.; Pang, H.; Yin, J.; Guan, L.; Lu, Q.; Gao, F. Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. CrystEngComm 2010, 12, 1404–1409. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Han, Y.; Ren, C.; Chen, X.; Hu, J.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; et al. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B Chem. 2019, 296, 126642. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Kang, J.C.; Wang, Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. Chemcatchem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- Adesina, A.A. Hydrocarbon synthesis via Fischer-Tropsch reaction: Travails and triumphs. Appl. Catal. A-Gen. 1996, 138, 345–367. [Google Scholar] [CrossRef]
- Ghaib, K.; Nitz, K.; Ben-Fares, F.Z. Chemical Methanation of CO2: A Review. ChemBioEng Rev. 2016, 3, 266–275. [Google Scholar] [CrossRef]
- Lee, W.J.; Li, C.E.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.X.; Lim, S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis 2021, 368, 2–19. [Google Scholar] [CrossRef]
- Molinet-Chinaglia, C.; Shafiq, S.; Serp, P. Low Temperature Sabatier CO2 Methanation. Chemcatchem 2024, 16, e202401213. [Google Scholar] [CrossRef]
- Medina, O.E.; Amell, A.A.; López, D.; Santamaría, A. Comprehensive review of nickel-based catalysts advancements for CO2 methanation. Renew. Sustain. Energy Rev. 2024, 207, 114926. [Google Scholar] [CrossRef]
- Ridzuan, N.D.M.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. Catalysts 2022, 12, 469. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, L.; Cui, Y.K.; Xing, Y.; Su, W. Research on nickel-based catalysts for carbon dioxide methanation combined with literature measurement. J. CO2 Util. 2022, 63, 102117. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Z.Q.; Chen, Y.Z.; Mei, J.; Xu, W.J.; Wang, L.S.; Peng, D.L. Nickel submicron particles synthesized via solvothermal approach in the presence of organic bases: Formation mechanism and magnetic properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130971. [Google Scholar] [CrossRef]
- Jaji, N.D.; Othman, M.B.H.; Lee, H.L.; Hussin, M.H.; Hui, D. One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnol. Rev. 2021, 10, 318–329. [Google Scholar] [CrossRef]
- Guo, H.; Pu, B.X.; Chen, H.Y.; Yang, J.; Zhou, Y.J.; Yang, J.; Bismark, B.; Li, H.D.; Niu, X.B. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. Nanoscale Res. Lett. 2016, 11, 352. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS. Available online: http://www.casaxps.com/ (accessed on 4 January 2025).
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Zheng, X.; Li, B.; Huang, R.; Jiang, W.; Shen, L.; Lei, G.; Wang, S.; Zhan, Y.; Jiang, L. Asymmetric Oxygen Vacancy-Promoted Synthesis of Aminoarenes from Nitroarenes Using Waste H2S as a “Hydrogen Donor”. ACS Catal. 2024, 14, 10245–10259. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, R.; Li, B.; Jiang, W.; Shen, L.; Lei, G.; Wang, S.; Zhan, Y.; Wang, S.; Jiang, L. Oxygen vacancies-promoted removal of COS via catalytic hydrolysis over CuTiO2-δ nanoflowers. Chem. Eng. J. 2024, 492, 152322. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.J.; Chan, T.S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Schmider, D.; Maier, L.; Deutschmann, O. Reaction Kinetics of CO and CO2 Methanation over Nickel. Kinet. Catal. React. Eng. 2021, 60, 5792–5805. [Google Scholar] [CrossRef]
- Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I.A.; Rabeah, J.; Brückner, A.; Hensen, E.J. Ni–In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021, 11, 11371–11384. [Google Scholar] [CrossRef]
- Tangstad, E.; Andersen, A.; Myhrvold, E.M.; Myrstad, T. Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments. Appl. Catal. A Gen. 2008, 346, 194–199. [Google Scholar] [CrossRef]
- Yarbaş, T.; Ayas, N. A detailed thermodynamic analysis of CO2 hydrogenation to produce methane at low pressure. Int. J. Hydrogen Energy 2024, 49, 1134–1144. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Danaci, S.; Protasova, L.; Lefevere, J.; Bedel, L.; Guilet, R.; Marty, P. Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal. Today 2016, 273, 234–243. [Google Scholar] [CrossRef]
- Usman, M.; Podila, S.; Al-Zahrani, A.A.; Alamoudi, M.A. CO2 methanation over Ni/SiO2–Al2O3 catalysts: Effect of Ba, La, and Ce addition. RSC Adv. 2025, 15, 10958–10969. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, A.R.; Rezaei, M.; Alavi, S.M.; Akbari, E.; Varbar, M.; Hafezi-Bakhtiari, J. CO2 methanation over NiO catalysts supported on CaO-Al2O3: Effect of CaO: Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy 2023, 48, 38664–38675. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhao, T.T.; Zhang, L.J. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation. Appl. Organomet. Chem. 2018, 32, e4328. [Google Scholar] [CrossRef]
Product | Solution | m (NaAc·3H2O), g | Calcination, Sample + T, °C * |
---|---|---|---|
Ni(a) | 80 mL EG | 11.92 | No |
NiO600(a) | --//-- | --//-- | Yes, Ni(a), 600 °C |
NiO1000(a) | --//-- | --//-- | Yes, Ni(a), 1000 °C |
Ni(OH)2(b) | 40 mL EG + 40 mL Et | 11.92 | No |
NiO400(b) | --//-- | --//-- | Yes, Ni(OH)2, 400 °C |
NiO600(b) | --//-- | --//-- | Yes, Ni(OH)2, 600 °C |
NiO(OH)x(c) | 40 mL EG + 40 mL Et | 5.96 | No |
NiO400(c) | --//-- | --//-- | Yes, NiO(OH)x, 400 °C |
NiO600(c) | --//-- | --//-- | Yes, NiO(OH)x, 600 °C |
Catalyst | XRD Measurement, Stoichiometry | |||
---|---|---|---|---|
Ni | NiO | α-Ni(OH)2 | (Ni(OH)2(NiOOH)0.167)0.857 | |
Ni(a) | 100% (cubic) 1 | |||
NiO600(a) | 100% | |||
NiO1000(a) | 100% | |||
Ni(OH)2(b) | 100% 2 | |||
NiO400(b) | 0.8% | 99.2% | ||
NiO600(b) | 100% | |||
NiO(OH)x(c) | 100% | |||
NiO400(c) | 0.8% | 99.2% | ||
NiO600(c) | 100% |
Sample Series | (a) | (b) | (c) | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample Name | Ni | NiO600 | NiO1000 | Ni(OH)2 | NiO400 | NiO600 | NiO(OH)x | NiO400 | NiO600 |
BET surface area, m2/g | 7.03 | 4.51 | 1.09 | 83.99 | 54.41 | 13.79 | 70.07 | 28.56 | 12.34 |
Pore volume, cm3/g | 0.0154 | 0.0070 | 0.0012 | 0.1090 | 0.0736 | 0.0166 | 0.1157 | 0.0369 | 0.0125 |
Average pore width, nm | 10.1 | 6.8 | 4.1 | 5.6 | 5.8 | 4.5 | 6.4 | 5.6 | 4.0 |
Catalyst | Element | |||
---|---|---|---|---|
Ni | Si | O | C | |
Ni(a)* | 1.0 | 30.8 | 62.7 | 5.5 |
NiO400(b)* | 2.4 | 30.1 | 62.7 | 4.8 |
Ni(OH)2(b)* | 1.9 | 30.2 | 61.7 | 6.2 |
Sample | Ssp, m2/g | XCO2,start | XCO2,end | SCH4,start | SCH4,end | Rank, XCO2,start | Rank, XCO2,end | Rank, Ssp |
---|---|---|---|---|---|---|---|---|
Ni(OH)2(b) | 84.0 | 95.6 | 84.2 | 99.8 | 99.0 | 1. | 1. | 1. |
Ni(a) | 7.0 | 94.9 | 66.4 | 99.6 | 94.2 | 2. | 4. | 7. |
NiO400(b) | 54.4 | 86.9 | 75.1 | 99.4 | 97.4 | 3. | 2. | 3. |
NiO(OH)x(c) | 70.1 | 83.6 | 71.4 | 98.9 | 96.0 | 4. | 3. | 2. |
NiO600(b) | 13.8 | 78.6 | 58.1 | 98.3 | 88.5 | 5. | 7. | 5. |
NiO600(c) | 12.3 | 78.0 | 65.7 | 97.7 | 93.4 | 6. | 5. | 6. |
NiO600(a) | 4.5 | 76.0 | 58.2 | 97.7 | 89.7 | 7. | 6. | 8. |
NiO1000(a) | 1.1 | 59.9 | 38.2 | 93.5 | 70.6 | 8. | 8. | 9. |
NiO400(c) | 28.6 | 53.3 | 17.9 | 89.4 | 21.8 | 9. | 9. | 4. |
Sample | XCO2(average) | SCH4(average) | T (°C) | Source |
---|---|---|---|---|
Ni(a) | 80.4 | 96.9 | 450 | this study |
Ni(OH)2(b) | 89.9 | 99.4 | 450 | this study |
NiO400(b) | 81.0 | 98.4 | 450 | this study |
Ni/Al2O3 | 88 | 97 | 450 | [54] |
Ce-Ni/SA | 80 | 96 | 450 | [55] |
NiO/CaO·2Al2O3 | 79.1 | 98.1 | 450 | [56] |
12Ni3Fe | 84.3 | 100.0 | 420 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikbashev, A.; Stryšovský, T.; Kajabová, M.; Kovářová, Z.; Tibe, A.P.; Simkovičová, K.; Prucek, R.; Panáček, A.; Kašlík, J.; Frontera, P.; et al. The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation. Nanomaterials 2025, 15, 1379. https://doi.org/10.3390/nano15171379
Bikbashev A, Stryšovský T, Kajabová M, Kovářová Z, Tibe AP, Simkovičová K, Prucek R, Panáček A, Kašlík J, Frontera P, et al. The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation. Nanomaterials. 2025; 15(17):1379. https://doi.org/10.3390/nano15171379
Chicago/Turabian StyleBikbashev, Arkadii, Tomáš Stryšovský, Martina Kajabová, Zuzana Kovářová, Arati Prakash Tibe, Karolína Simkovičová, Robert Prucek, Aleš Panáček, Josef Kašlík, Patrizia Frontera, and et al. 2025. "The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation" Nanomaterials 15, no. 17: 1379. https://doi.org/10.3390/nano15171379
APA StyleBikbashev, A., Stryšovský, T., Kajabová, M., Kovářová, Z., Tibe, A. P., Simkovičová, K., Prucek, R., Panáček, A., Kašlík, J., Frontera, P., Roman, K., Grainca, A., Pirola, C., Brabec, L., Bastl, Z., Vajda, Š., & Kvítek, L. (2025). The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation. Nanomaterials, 15(17), 1379. https://doi.org/10.3390/nano15171379