On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms
Abstract
1. Introduction
2. Principle and Characteristics
2.1. Beam Steering
2.2. Beam Steering Range
2.3. Beam Width
3. Liquid Crystal Optical Phased Arrays
3.1. Device Scale
3.2. Deflection Angle and Diffraction Efficiency
3.3. Response Time
3.4. Power Tolerance Capability
4. Lithium Niobate Optical Phased Arrays
4.1. Separate Lithium Niobate OPA
4.2. Thin Film Lithium Niobate OPA
5. Silicon Optical Phased Arrays
5.1. Si-Based OPA
5.2. SiN-Based OPA
5.3. Si-SiN-Based OPA
6. Other Materials for Optical Phased Arrays
7. Conclusions and Outlook
Type | Power Con-Sumption | Footprint | Scale | FOV (°) × (°) | Response Times | Angular Resolution (°) × (°) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
LC-OPA | – | 19.66 mm × 19.66 mm | 1 × 12,288 | 6.95 × – | 24.8 ms | – | 2006 | [69] |
– | 80 mm × 80 mm | – | 24 × 24 | 17.2 ms | – | 2022 | [85] | |
– | 20 mm × 20 mm | – | 22.9 × – | 70 μs | – | 2022 | [158] | |
– | 15.36 cm × 9.6 cm | 1900 × 1200 | 360 × 2.1 | 14.0 ms | 0.04 × – | 2025 | [74] | |
LN-OPA | 1.11 nJ/π | 48 μm × 100 μm | 32 | 62.2 × 8.8 | 14 ns | 2.4 × 1.2 | 2024 | [108] |
18.5 mW/π | – | 128 | 80 × 5 | – | 0.1 × 0.037 | 2025 | [112] | |
– | – | 64 | 21.22 × – | 1.37 μs | 0.07 × – | 2025 | [113] | |
41.6 pJ/π | – | 16 | 62 × 7.6 | 26 ns | 3.2 × 1.4 | 2025 | [114] | |
Si-OPA | 8.5 mW/π | 576 μm × 576 μm | 4096 | 6 × 6 | – | – | 2013 | [116] |
– | 8 mm × 5 mm | 8192 | 100 × 17 | 30 μs | 0.01 × 0.04 | 2022 | [119] | |
– | 1.8 mm × 2.5 mm | 256 | 14.8 × 150 | – | 0.066 × 0.068 | 2023 | [141] | |
6 mW/π | – | 256 | 160 × – | – | 0.16 × 0.04 | 2024 | [159] |
Funding
Conflicts of Interest
References
- Beer, M.; Haase, J.F.; Ruskowski, J.; Kokozinski, R. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection. Sensors 2018, 18, 4338. [Google Scholar] [CrossRef]
- Hao, Y.; Zhu, Q.; Han, Y.; Zang, Z.; Ye, Z.; Chang-Hasnain, C.; Fu, H.Y. Hybrid FMCW LiDAR System With Nonlinearity-Corrected MEMS-VCSEL for Extended 3D Imaging Range. J. Light. Technol. 2025, 43, 4042–4052. [Google Scholar] [CrossRef]
- Lin, Y.X.; Ahmad, Z.; Ou, S.Y.; Su, W.C.; Chang, Y.C.; Chen, J.H.; Hung, Y.J.; Chang, Y.C.; Wei, C.C.; Horng, T.S.; et al. A 4-D FMCW LiDAR With Ultra-High Velocity Sensitivity. J. Light. Technol. 2023, 41, 6664–6674. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Qu, X. High-Resolution Frequency-Modulated Continuous-Wave LiDAR Using Multiple Laser Sources Simultaneously Scanning. J. Light. Technol. 2023, 41, 367–373. [Google Scholar] [CrossRef]
- Behroozpour, B.; Sandborn, P.A.M.; Quack, N.; Seok, T.J.; Matsui, Y.; Wu, M.C.; Boser, B.E. Electronic-Photonic Integrated Circuit for 3D Microimaging. IEEE J. Solid-State Circuits 2017, 52, 161–172. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, Z.; Tian, X.; Qiu, L.; Ba, D. Frequency-Modulated Continuous-Wave LIDAR and 3D Imaging by Using Linear Frequency Modulation Based on Injection Locking. J. Light. Technol. 2021, 39, 2275–2280. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Liu, M.; Qu, X.; Zhang, F. Non-Line-of-Sight Ranging and 3D Imaging Using Vector Enhanced Sensitive FMCW LiDAR. J. Light. Technol. 2025, 43, 4119–4126. [Google Scholar] [CrossRef]
- Liu, Q.; Benedikovic, D.; Smy, T.; Atieh, A.; Cheben, P.; Ye, W.N. Circular Optical Phased Arrays with Radial Nano-Antennas. Nanomaterials 2022, 12, 1938. [Google Scholar] [CrossRef]
- Chow, C.W.; Chang, Y.C.; Kuo, S.I.; Kuo, P.C.; Wang, J.W.; Jian, Y.H.; Ahmad, Z.; Fu, P.H.; Shi, J.W.; Huang, D.W.; et al. Actively Controllable Beam Steering Optical Wireless Communication (OWC) Using Integrated Optical Phased Array (OPA). J. Light. Technol. 2023, 41, 1122–1128. [Google Scholar] [CrossRef]
- Zou, F.; Pan, Z.; Liu, J.; Li, Z.; Pan, L.; Yang, R.; Jiang, J.; Li, F.; Geng, C.; Li, X. Turbulence Compensation for Receiving and Coherent Combining via Phased Fiber Laser Array. IEEE Photonics Technol. Lett. 2023, 35, 733–736. [Google Scholar] [CrossRef]
- Jayaweera, V.L.; Peiris, C.; Darshani, D.; Edirisinghe, S.; Dharmaweera, N.; Wijewardhana, U. Visible Light Communication for Underwater Applications: Principles, Challenges, and Future Prospects. Photonics 2025, 12, 593. [Google Scholar] [CrossRef]
- McManamon, P.F.; Dorschner, T.A.; Corkum, D.L.; Friedman, L.J.; Hobbs, D.S.; Holz, M.; Liberman, S.; Nguyen, H.Q.; Resler, D.P.; Sharp, R.C.; et al. Optical phased array technology. Proc. IEEE 1996, 84, 268–298. [Google Scholar] [CrossRef]
- Huang, W.R.; Montoya, J.; Kansky, J.E.; Redmond, S.M.; Turner, G.W.; Sanchez-Rubio, A. High speed, high power one-dimensional beam steering from a 6-element optical phased array. Opt. Express 2012, 20, 17311–17318. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Cao, Y.; Liu, R.; Zhang, L.; Zhao, X.; Lu, F.; Miao, Z.; Li, Q.; Han, X. High-precision two-dimensional beam steering with a 64-element optical fiber phased array. Appl. Opt. 2021, 60, 10002–10008. [Google Scholar] [CrossRef] [PubMed]
- Vorobyov, S.; Gershman, A.; Luo, Z.Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Trans. Signal Process. 2003, 51, 313–324. [Google Scholar] [CrossRef]
- Ni, G.; Song, Y.; Chen, J.; He, C.; Jin, R. Single-Channel LCMV-Based Adaptive Beamforming With Time-Modulated Array. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1881–1885. [Google Scholar] [CrossRef]
- Xin’gang, Z.; Dongsheng, Z.; Pengzhan, H.; Men, G.; Zhengxin, S. Optimized design of high throughput satellite antenna based on differential evolution algorithm. Chin. J. Radio Sci. 2024, 39, 1154–1159. [Google Scholar] [CrossRef]
- Barad, D.; Dash, J.C.; Sarkar, D.; Srinivasulu, P. Dual-band dual-polarized sub-6 GHz phased array antenna with suppressed higher order modes. Sci. Rep. 2024, 14, 6139. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Kong, L. Optical multi-beam forming method based on a liquid crystal optical phased array. Appl. Opt. 2017, 56, 9854–9861. [Google Scholar] [CrossRef]
- Ding, L.; Shi, C.; Zhou, J. Joint Beampattern Design and Online Route Planning for Multitarget Tracking in Airborne Radar System. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 774–788. [Google Scholar] [CrossRef]
- Yan, J.; Pu, W.; Liu, H.; Zhou, S.; Bao, Z. Cooperative target assignment and dwell allocation for multiple target tracking in phased array radar network. Signal Process. 2017, 141, 74–83. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, C.; Zhou, J.; Lv, R. Joint Aperture and Transmit Resource Allocation Strategy for Multitarget Localization in the Phased Array Radar Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1551–1565. [Google Scholar] [CrossRef]
- Yuan, Y.; Yi, W.; Hoseinnezhad, R.; Varshney, P.K. Robust Power Allocation for Resource-Aware Multi-Target Tracking With Colocated MIMO Radars. IEEE Trans. Signal Process. 2021, 69, 443–458. [Google Scholar] [CrossRef]
- Zhao, D.; Gu, P.; Zhong, J.; Peng, N.; Yang, M.; Yi, Y.; Zhang, J.; He, P.; Chai, Y.; Chen, Z.; et al. Millimeter-Wave Integrated Phased Arrays. IEEE Trans. Circuits Syst. I Regul. Pap. A Publ. IEEE Circuits Syst. Soc. 2021, 68, 3977–3990. [Google Scholar] [CrossRef]
- Sadhu, B.; Paidimarri, A.; Liu, D.; Yeck, M.; Ozdag, C.; Tojo, Y.; Lee, W.; Gu, K.X.; Plouchart, J.O.; Baks, C.W.; et al. A 24–30-GHz 256-Element Dual-Polarized 5G Phased Array Using Fast On-Chip Beam Calculators and Magnetoelectric Dipole Antennas. IEEE J. Solid-State Circuits 2022, 57, 3599–3616. [Google Scholar] [CrossRef]
- Akaishi, A.; Iguchi, M.; Hariu, K.; Shimada, M.; Kuroda, T.; Yajima, M. Ka-band Active Phased Array Antenna for WINDS Satellite. In Proceedings of the 21st International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 15 April–19 April 2003. [Google Scholar]
- Pang, J.; Li, Z.; Kubozoe, R.; Luo, X.; Wu, R.; Wang, Y.; You, D.; Fadila, A.A.; Saengchan, R.; Nakamura, T.; et al. A 28-GHz CMOS Phased-Array Beamformer Utilizing Neutralized Bi-Directional Technique Supporting Dual-Polarized MIMO for 5G NR. IEEE J. Solid-State Circuits 2020, 55, 2371–2386. [Google Scholar] [CrossRef]
- Pang, J.; Li, Z.; Luo, X.; Alvin, J.; Saengchan, R.; Fadila, A.A.; Yanagisawa, K.; Zhang, Y.; Chen, Z.; Huang, Z.; et al. A CMOS Dual-Polarized Phased-Array Beamformer Utilizing Cross-Polarization Leakage Cancellation for 5G MIMO Systems. IEEE J. Solid-State Circuits 2021, 56, 1310–1326. [Google Scholar] [CrossRef]
- Pascale, V.; Maiarelli, D.; D’Agristina, L.; Gatti, N. Design and qualification of Ku-band-radiating chains for receive active array antennas of flexible telecommunication satellites. Int. J. Microw. Wirel. Technol. 2020, 12, 487–503. [Google Scholar] [CrossRef]
- Roper, D.H.; Babiec, W.E.; Hannan, D.D. WGS phased arrays support next generation DoD SATCOM capability. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 14–17 October 2003. [Google Scholar]
- Yajima, M.; Hasegawa, T.; Kuroda, T.; Shimada, M. On-board Evaluation Results of Active Phased Array Antenna for WINDS Satellite. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2011, 8, Pj13–Pj18. [Google Scholar] [CrossRef]
- Boyd, C. A Dual-Mode Latching Reciprocal Ferrite Phase Shifter. IEEE Trans. Microw. Theory Tech. 1970, 18, 1119–1124. [Google Scholar] [CrossRef]
- Che, W.; Junding, W.; Shu, K.; Wen, Y. Phase-adjustment technique of the digital-latching ferrite phase shifter. IEEE Trans. Microw. Theory Tech. 1999, 47, 1125–1127. [Google Scholar] [CrossRef]
- Ghaffar, F.A.; Shamim, A. A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications. IEEE Trans. Magn. 2015, 51, 4003108. [Google Scholar] [CrossRef]
- Simon, K.; Schindler, M.; Mieczkowski, V.; Newman, P.; Goldfarb, M.; Reese, E.; Small, B. A production ready, 6-18-GHz, 5-b phase shifter with integrated CMOS compatible digital interface circuitry. IEEE J. Solid-State Circuits 1992, 27, 1452–1456. [Google Scholar] [CrossRef]
- Hao, Z.; Yuan, W. A 6-18GHz 6-bit Phase Shifter for Broadband Phased Array Applications. In Proceedings of the 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 12–15 August 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Hu, W.; Ismail, M.; Cahill, R.; Gamble, H.; Dickie, R.; Fusco, V.; Linton, D.; Rea, S.; Grant, N. Tunable liquid crystal reflectarray patch element. Electron. Lett. 2006, 42, 509–511. [Google Scholar] [CrossRef]
- Karabey, O.H.; Gaebler, A.; Strunck, S.; Jakoby, R. A 2-D Electronically Steered Phased-Array Antenna With 2 × 2 Elements in LC Display Technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 1297–1306. [Google Scholar] [CrossRef]
- Aghabeyki, P.; Cai, Y.; Deng, G.; Frølund Pedersen, G.; Zhang, S. Beam-Scanning Reflectarray With Switchable Polarization Based on Liquid Crystal at Millimeter Wave. IEEE Trans. Antennas Propag. 2025, 73, 1894–1899. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yang, G.; Li, Q.; Zhang, Y.; Yan, S.; Wang, C. All-Solid-State Optical Phased Arrays of Mid-Infrared Based Graphene-Metal Hybrid Metasurfaces. Nanomaterials 2021, 11, 1552. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, J.; Li, H.; Zhang, Y.; Wu, Y.; Hu, Y.; Wu, J.; Yang, J. Ultra-Compact and Broadband Nano-Integration Optical Phased Array. Nanomaterials 2023, 13, 2516. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Shi, Y. All-Solid-State Beam Steering via Integrated Optical Phased Array Technology. Micromachines 2022, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.P.; Li, B.; Solano-Rivas, B.; Gohil, A.R.; Chan, P.H.; Moore, A.D.; Donzella, V. A Review and Perspective on Optical Phased Array for Automotive LiDAR. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8300416. [Google Scholar] [CrossRef]
- Yi, Y.; Wu, D.; Kakdarvishi, V.; Yu, B.; Zhuang, Y.; Khalilian, A. Photonic Integrated Circuits for an Optical Phased Array. Photonics 2024, 11, 243. [Google Scholar] [CrossRef]
- Heck, M.J. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 2017, 6, 93–107. [Google Scholar] [CrossRef]
- Jiao, Y.; Nishiyama, N.; van der Tol, J.; van Engelen, J.; Pogoretskiy, V.; Reniers, S.; Kashi, A.A.; Wang, Y.; Calzadilla, V.D.; Spiegelberg, M.; et al. InP membrane integrated photonics research. Semicond. Sci. Technol. 2020, 36, 013001. [Google Scholar] [CrossRef]
- Isaac, B.J.; Song, B.; Pinna, S.; Coldren, L.A.; Klamkin, J. Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8000107. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Wang, X.; Shang, J. Research review on the development of liquid crystal optical phased array device on the application of free space laser communication. Proc. SPIE 2018, 10841, 69–89. [Google Scholar] [CrossRef]
- Mcmanamon, P.F.; Ataei, A. Progress and opportunities in the development of nonmechanical beam steering for electro-optical systems. Opt. Eng. 2019, 58, 120901. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, Q.; Yang, Y.; Lu, L.; Chen, J.; Zhou, L. Progress and prospects for LiDAR-oriented optical phased arrays based on photonic integrated circuits. npj Nanophotonics 2025, 2, 14. [Google Scholar] [CrossRef]
- Liu, C.B.; Chen, J.Q.; Liu, J.X.; Han, X.E. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array. Opt. Express 2018, 26, 10048–10064. [Google Scholar] [CrossRef]
- Liu, C.B.; Lu, F.; Wu, C.; Han, X.E. Spatial correlation properties of coherent array beams modulated by space-time random phase. Opt. Commun. 2015, 346, 26–33. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: 60th Anniversary Edition, 7th ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Wang, X. Beams Optimization and Steering via Optical Phased Array. Ph.D. Thesis, Xidian University, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Soref, R.A.; Rafuse, M.J. Electrically Controlled Birefringence of Thin Nematic Films. J. Appl. Phys. 1972, 43, 2029–2037. [Google Scholar] [CrossRef]
- Mailer, H.; Likins, K.L.; Taylor, T.R.; Fergason, J.L. Effect of Ultrasound on A Nematic Liquid Crystal. Appl. Phys. Lett. 1971, 18, 105–107. [Google Scholar] [CrossRef]
- Yao, E.; Franke-Arnold, S.; Courtial, J.; Padgett, M.J.; Barnett, S.M. Observation of quantum entanglement using spatial light modulators. Opt. Express 2006, 14, 13089–13094. [Google Scholar] [CrossRef]
- Kong, L.J.; Sun, Y.; Zhang, F.; Zhang, J.; Zhang, X. High-Dimensional Entanglement-Enabled Holography. Phys. Rev. Lett. 2023, 130, 053602. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011, 5, 81–101. [Google Scholar] [CrossRef]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A PRA 2008, 78, 061802. [Google Scholar] [CrossRef]
- Moreau, P.A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Ghost Imaging Using Optical Correlations. Laser Photonics Rev. 2018, 12, 1700143. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Sun, B.; Salter, P.S.; Roider, C.; Jesacher, A.; Strauss, J.; Heberle, J.; Schmidt, M.; Booth, M.J. Four-dimensional light shaping: Manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 2018, 7, 17117. [Google Scholar] [CrossRef]
- Jesacher, A.; Maurer, C.; Schwaighofer, A.; Bernet, S.; Ritsch-Marte, M. Near-perfect hologram reconstruction with a spatial light modulator. Opt. Express 2008, 16, 2597–2603. [Google Scholar] [CrossRef]
- Resler, D.P.; Hobbs, D.S.; Sharp, R.C.; Friedman, L.J.; Dorschner, T.A. High-efficiency liquid-crystal optical phased-array beam steering. Opt. Lett. 1996, 21, 689–691. [Google Scholar] [CrossRef]
- Stockley, J.; Serati, S. Advances in liquid crystal beam steering. In Proceedings of the Optical Science and Technology, SPIE 49th Annual Meeting, Denver, CO, USA, 2–6 August 2004; SPIE: Bellingham, WA, USA, 2004; Volume 5550. [Google Scholar] [CrossRef]
- Yang, Y.; Forbes, A.; Cao, L. A review of liquid crystal spatial light modulators: Devices and applications. Opto-Electron. Sci. 2023, 2, 230026-1–230026-29. [Google Scholar] [CrossRef]
- Linnenberger, A.; Serati, S.; Stockley, J. Advances in optical phased array technology. In Free-Space Laser Communications VI; SPIE Optics + Photonics; SPIE: Bellingham, WA, USA, 2006; Volume 6304. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Wu, L.Y. Influence of phase delay profile on diffraction efficiency of liquid crystal optical phased array. Opt. Laser Technol. 2009, 41, 509–516. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Wu, L.; Liu, X.; Guo, H.; Huang, X.; Xie, X.; Tan, Q.; Cao, J. Aperture scalable liquid crystal optically duplicated array of phased array. Opt. Commun. 2019, 451, 174–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wang, Q.; Mu, Q.; Peng, Z.; Dong, K.; Song, Y.; Liu, Y.; Jiang, H. Dual-wavelength synchronous control method for liquid crystal optical phased array. Opt. Express 2025, 33, 4280–4292. [Google Scholar] [CrossRef] [PubMed]
- Notaros, M.; DeSantis, D.M.; Raval, M.; Notaros, J. Liquid-crystal-based visible-light integrated optical phased arrays and application to underwater communications. Opt. Lett. 2023, 48, 5269–5272. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Hao, Q.; Li, W.; Sheng, Y.; Chen, H.; Gao, Z.H.; Ji, P. All-solid-state omnidirectional fast scanning using liquid crystal optical phased array and conical mirror. Opt. Express 2025, 33, 18124–18135. [Google Scholar] [CrossRef]
- Kim, J.; Oh, C.; Escuti, M.; Hosting, L.; Serati, S. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings. In Advanced Wavefront Control: Methods, Devices, and Applications VI; Optical Engineering + Applications; SPIE: Bellingham, WA, USA, 2008; Volume 7093. [Google Scholar] [CrossRef]
- Wenben, X.; Yongmei, H.; Qiongyan, W.; Cai, Z. A wide-angle beam steering system based on Wollaston prisms. Opt. Tech. 2012, 38, 588–592. [Google Scholar] [CrossRef]
- Engström, D.; O’Callaghan, M.J.; Walker, C.; Handschy, M.A. Fast beam steering with a ferroelectric-liquid-crystal optical phased array. Appl. Opt. 2009, 48, 1721–1726. [Google Scholar] [CrossRef]
- Mengjiao, Q.; Qidong, W.; Quanquan, M.; Yonggang, L.; Lishuang, Y.; Zhaoliang, C.; Hongsheng, Z.; Chengliang, Y.; Lifa, H.; Li, X. Study of Response Time Depending on Driving Voltage of Liquid Crystal Spatial Light Modulator. Laser Optoelectron. Prog. 2013, 50, 178–183. [Google Scholar] [CrossRef]
- He, X.; Li, M.; Liang, Z.; Wang, X.; Liu, X.; Wang, Y.; Zhang, L. A liquid crystal stackable phased array to achieve fast and precise nonmechanical laser beam deflection. Opt. Commun. 2022, 506, 127598. [Google Scholar] [CrossRef]
- Gu, D.; Wen, B.; Mahajan, M.; Taber, D.; Winker, B.; Guthals, D.; Campbell, B.; Sox, D. High power liquid crystal spatial light modulators. In Advanced Wavefront Control: Methods, Devices, and Applications IV; SPIE Optics + Photonics; SPIE: Bellingham, WA, USA, 2006; Volume 6306. [Google Scholar]
- Xiangru, W.; Zhuangqi, Z. Research progress of liquid crystal optical phased array in high power laser applications (Invited). Infrared Laser Eng. 2018, 47, 103006. [Google Scholar] [CrossRef]
- Xing, Z.; Fan, W.; Huang, D.; Cheng, H.; Xia, G. High laser damage threshold liquid crystal optical switch based on a gallium nitride transparent electrode. Opt. Lett. 2020, 45, 3537–3540. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Huang, D.; Cheng, H.; Fan, W.; Xing, Z.; Zhu, J.; Liu, W. Research on High Power Laser Damage Resistant Optically Addressable Spatial Light Modulator. Photonics 2022, 9, 811. [Google Scholar] [CrossRef]
- Xing, Z.; Fan, W.; Huang, D.; Cheng, H.; Du, T. High laser damage threshold reflective optically addressed liquid crystal light valve based on gallium nitride conductive electrodes. High Power Laser Sci. Eng. 2022, 10, e35. [Google Scholar] [CrossRef]
- Liang, Z.; Huang, Y.; Xiaoxian, H.; Wen, D.; Wang, Y.; Wang, X. Four-access, 80 mm aperture all phase-controlled liquid crystal laser antenna. Opt. Eng. 2022, 61, 105113. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, S.; Cheng, Y.; Hao, Q. Omnidirectional all-solid-state aliasing-free scanning using liquid crystal optical phased array and conical mirror. Opt. Lasers Eng. 2025, 184, 108664. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, J.; Chen, C.; Li, H.; Wan, W.; Chen, X.; Chen, Y. Erbium-doped lithium niobate waveguide amplifier enhanced by an inverse-designed on-chip reflector. Opt. Lett. 2025, 50, 3624–3627. [Google Scholar] [CrossRef]
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices. Adv. Mater. 2020, 32, 1806452. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Wang, Z.; Zhang, J.; Kazansky, P.G.; Tan, D.; Qiu, J. 3D Imprinting of Voxel-Level Structural Colors in Lithium Niobate Crystal. Adv. Mater. 2023, 35, 2303256. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhang, B.; Qiu, J. Single-Pulse-Driven Frame Printing of Chromatic Pixels in Lithium Niobate Crystal. Laser Photonics Rev. 2024, 18, 2400054. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y. Integrated lithium niobate photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Levy, M.; Osgood, R.M., Jr.; Liu, R.; Cross, L.E.; Cargill, G.S., III; Kumar, A.; Bakhru, H. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 1998, 73, 2293–2295. [Google Scholar] [CrossRef]
- Lin, J.; Yao, N.; Hao, Z.; Zhang, J.; Mao, W.; Wang, M.; Chu, W.; Wu, R.; Fang, Z.; Qiao, L.; et al. Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Phys. Rev. Lett. 2019, 122, 173903. [Google Scholar] [CrossRef] [PubMed]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Wang, C. Breaking anisotropy limitations in thin-film lithium niobate arrayed waveguide gratings. Light Sci. Appl. 2024, 13, 209. [Google Scholar] [CrossRef]
- Snigirev, V.; Riedhauser, A.; Lihachev, G.; Churaev, M.; Riemensberger, J.; Wang, R.N.; Siddharth, A.; Huang, G.; Möhl, C.; Popoff, Y.; et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 2023, 615, 411–417. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Liu, L.; Vorontsov, M.A. Phase-locking of tiled fiber array using SPGD feedback controller. SPIE Proc. 2005, 5895, 138–146. [Google Scholar] [CrossRef]
- Shay, T.M.; Benham, V.; Baker, J.T.; Ward, B.; Sanchez, A.D.; Culpepper, M.A.; Pilkington, D.; Spring, J.; Nelson, D.J.; Lu, C.A. First experimental demonstration of self-synchronous phase locking of an optical array. Opt. Express 2006, 14, 12015–12021. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Hou, J.; Liu, M.; Jiang, Z.F. Coherent combining technology of master oscillator power amplifier fiber arrays. Opt. Express 2008, 16, 2015–2022. [Google Scholar] [CrossRef]
- Chang, H.; Chang, Q.; Xi, J.; Hou, T.; Su, R.; Ma, P.; Wu, J.; Li, C.; Jiang, M.; Ma, Y.; et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Res. 2020, 8, 1943–1948. [Google Scholar] [CrossRef]
- Tien, P.K.; Riva-Sanseverino, S.; Ballman, A.A. Light beam scanning and deflection in epitaxial LiNbO3 electro-optic waveguides. Appl. Phys. Lett. 1974, 25, 563–565. [Google Scholar] [CrossRef]
- Yue, G.; Li, Y. Integrated lithium niobate optical phased array for two-dimensional beam steering. Opt. Lett. 2023, 48, 3633–3636. [Google Scholar] [CrossRef]
- Wang, Z.; Song, W.; Chen, Y.; Fang, B.; Ji, J.; Xin, H.; Zhu, S.; Li, T. Metasurface empowered lithium niobate optical phased array with an enlarged field of view. Photonics Res. 2022, 10, B23. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; He, J.; Yan, H.; Pan, B.; Guo, Z.; Han, X.; Chen, J.; Dai, D.; Shi, Y. High-speed 2D beam steering based on a thin-film lithium niobate optical phased array with a large field of view. Photonics Res. 2023, 11, 1912–1918. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liu, R.; Deng, S.; Zhu, J.; Hu, Y.; Yang, T.; Guan, H.; Lu, H. Design of optical phased array with low-sidelobe beam steering in thin film lithium niobate. Opt. Laser Technol. 2024, 171, 110432. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Ji, J.; Sun, Z.; Sun, J.; Fang, B.; Lu, J.; Li, S.; Ma, X.; Chen, X.; et al. Fast-speed and low-power-consumption optical phased array based on lithium niobate waveguides. Nanophotonics 2024, 13, 2429–2436. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; He, Y.; Liu, Y.; Wei, X.; Xu, Z. Cascaded domain engineering optical phased array for 2D beam steering. Nanophotonics 2023, 12, 4017–4030. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Han, Y.; Li, B.; Hao, W.; Qiu, L.; Liu, Y.; He, Y.; Wei, X.; Xu, Z. Design and analysis of single-electrode integrated lithium niobate optical phased array for two-dimensional beam steering. Opt. Lasers Eng. 2025, 184, 108617. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Zheng, H.; Luo, S.; Liu, X.; Hu, Q.; Chen, H.; Liang, W.; Liu, J.; Chen, H.; et al. Cascaded domain engineering optical phased array for beam steering. Appl. Phys. Rev. 2023, 10, 031413. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.; Kang, Z.; Lin, Z.; Zhao, S.; Lian, D.; He, J.; Huang, D.; Dai, D.; Shi, Y. Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR. Nat. Commun. 2025, 16, 1056. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Deng, X.; Yu, J.; Wu, C.; Chen, H.; Zhu, W.; Ma, W.; Chen, Z.; Pan, W.; Zou, X.; et al. 50Gbps Mobile Optical Wireless Communication Enabled by Lithium-Niobate-Based Beam Steering. J. Light. Technol. 2025, 43, 8016–8028. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Wang, J.; Zhang, L.; Gan, X.; Qiao, D.; Li, Y. Taylor Amplitude Distribution for Low Sidelobe in Thin-Film Lithium Niobate Optical Phased Array. J. Light. Technol. 2025, 43, 8286–8292. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Shi, Y. Dual Polarization and Bi-Directional Silicon-Photonic Optical Phased Array With Large Scanning Range. IEEE Photonics J. 2022, 14, 6620905. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Jensen, J.R.; Schmidt, L.; Schill, S.; Davis, B. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens. Environ. 2003, 84, 295–308. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Moss, B.; Shatrovoy, O.; Khandaker, M.; Watts, M.R. Coherent LiDAR With an 8,192-Element Optical Phased Array and Driving Laser. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 6100508. [Google Scholar] [CrossRef]
- Wang, P.; Luo, G.; Xu, Y.; Li, Y.; Su, Y.; Ma, J.; Wang, R.; Yang, Z.; Zhou, X.; Zhang, Y.; et al. Design and fabrication of a SiN-Si dual-layer optical phased array chip. Photonics Res. 2020, 8, 912–919. [Google Scholar] [CrossRef]
- López, J.J.; Skirlo, S.A.; Kharas, D.; Sloan, J.; Sorace-Agaskar, C. Planar-lens Enabled Beam Steering for Chip-scale LIDAR. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 13–18 May 2018. [Google Scholar] [CrossRef]
- Li, C.; Cao, X.; Wu, K.; Li, X.; Chen, J. A Switch-based Integrated 2D Beam-steering device for Lidar Application. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Yu, L.; Wang, P.; Ma, P.; Cui, L.; Wang, Z.; Yang, Y.; Zhang, Y.; Pan, J. Two-Dimensional Beam Scanning of Passive Optical Phased Array Based on Silicon Nitride Delay Line. J. Light. Technol. 2023, 41, 2756–2764. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, S.; Li, W.; Wang, X.; Han, X.; Shi, Y. Silicon Optical Phased Array Hybrid Integrated with III–V Laser for Grating Lobe-Free Beam Steering. Photonics 2024, 11, 952. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Bogaerts, W.; Jágerská, J.; Le Thomas, N.; Houdré, R.; Baets, R. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 2009, 34, 1477–1479. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Komorowska, K.; Bogaerts, W.; Baets, R. One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator. J. Light. Technol. 2011, 29, 3500–3505. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Rogier, H.; Baets, R. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express 2010, 18, 13655–13660. [Google Scholar] [CrossRef]
- Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Coldren, L.A.; Bowers, J.E. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 2011, 19, 21595–21604. [Google Scholar] [CrossRef]
- Abediasl, H.; Hashemi, H. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 2015, 23, 6509–6519. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, D.N.; Sun, J.; Doylend, J.K.; Kumar, R.; Heck, J.; Kim, W.; Phare, C.T.; Feshali, A.; Rong, H.S. High-resolution aliasing-free optical beam steering. Optica 2016, 3, 887–890. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Raval, M.; Su, Z.; Li, N.X.; Timurdogan, E.; Coolbaugh, D.; Vermeulen, D.; Watts, M.R. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 2017, 42, 21–24. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7700108. [Google Scholar] [CrossRef]
- Miller, S.A.; Chang, Y.C.; Phare, C.T.; Shin, M.C.; Zadka, M.; Roberts, S.P.; Stern, B.; Ji, X.; Mohanty, A.; Gordillo, O.A.J.; et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020, 7, 3–6. [Google Scholar] [CrossRef]
- Marinins, A.; Dwivedi, S.P.; Kjellman, J.Ø.; Kerman, S.; David, T.; Figeys, B.; Jansen, R.; Tezcan, D.S.; Rottenberg, X.; Soussan, P. Silicon photonics co-integrated with silicon nitride for optical phased arrays. Jpn. J. Appl. Phys. 2020, 59, SGGE02. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Jia, L.; Cai, Y.; Yue, W.; Yu, M. Silicon nitride assisted 1×64 optical phased array based on a SOI platform. Opt. Express 2021, 29, 10509–10517. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Guo, Y.; Li, X.; Liu, C.; Lu, L.; Chen, J.; Zhou, L. Fully Integrated Solid-State LiDAR Transmitter on a Multi-Layer Silicon-Nitride-on-Silicon Photonic Platform. J. Light. Technol. 2023, 41, 832–840. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Du, H.; Chen, B.; Song, J.; Tao, M. Integrated communication and sensing system based on Si-SiN dual-layer optical phased array. Opt. Express 2024, 32, 33222–33231. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, H.; Yang, D.; Wang, W.; Wang, S.; Wang, C.; Wang, Q.; Yue, W.; Cai, Y. Aperiodic optical phased array with wide field of view and high sidelobe suppression ratio based on SiN-on-SOI platform. Opt. Express 2025, 33, 4499–4509. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, B.; Na, Q.; Xie, Q.; Tao, M.; Zhang, L.; Zhi, Z.; Li, Y.; Liu, X.; Luo, X.; et al. Wide-steering-angle high-resolution optical phased array. Photonics Res. 2021, 9, 2511–2518. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Chen, B.; Xia, P.; Zhou, Z.; Huang, Q.; Dai, T.; Wang, Y.; Yang, J. A Tri-Layer SiN-on-Si Optical Phased Array With High Angular Resolution. Photonics Technol. Lett. IEEE 2022, 34, 4. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, L.; Yang, Y.; Ma, P.; Cui, L.; Luo, S.; Ji, Z.; Song, Z.; Su, Y.; Pan, J.; et al. Wide field of view optical phased array with a high-directionality antenna. Opt. Express 2023, 31, 21192–21199. [Google Scholar] [CrossRef]
- Sacher, W.D.; Huang, Y.; Lo, G.Q.; Poon, J.K.S. Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices. J. Light. Technol. 2015, 33, 901–910. [Google Scholar] [CrossRef]
- Sacher, W.D.; Mikkelsen, J.C.; Dumais, P.; Jiang, J.; Poon, J.K.S. Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions. Opt. Express 2017, 25, 30862–30875. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, W.; Lu, L.; Chen, J.; Zhou, L. Ultra-low-loss multi-layer 8 × 8 microring optical switch. Photonics Res. 2023, 11, 712–723. [Google Scholar] [CrossRef]
- Lu, L.; Xu, W.; Guo, Y.; Liu, C.; Chen, J.; Zhou, L. Large-Scale Optical Phased Array Based on a Multi-Layer Silicon-Nitride-on-Silicon Photonic Platform. In Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, VA, USA, 24–28 March 2024; pp. 1–3. [Google Scholar]
- Zhang, L.; Li, Y.; Hou, Y.; Wang, Y.; Tao, M.; Chen, B.; Na, Q.; Li, Y.; Zhi, Z.; Liu, X.; et al. Investigation and demonstration of a high-power handling and large-range steering optical phased array chip. Opt. Express 2021, 29, 29755–29765. [Google Scholar] [CrossRef] [PubMed]
- Vasey, F.; Reinhart, F.K.; Houdré, R.; Stauffer, J.M. Spatial optical beam steering with an AlGaAs integrated phased array. Appl. Opt. 1993, 32, 3220–3232. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.Z.; Shi, S.X.; Li, J.L. Novel unitary optical mode converter. Opt. Laser Technol. 2007, 39, 282–284. [Google Scholar] [CrossRef]
- Li, J.; Shi, S.; Liu, J.; Sun, Y.; Dong, H.; Liang, H. Electromagnetism theory of waveguide array electro-optical scanner: Model and characteristics of optical field distribution in the waveguide array. J. Appl. Phys. 2006, 100, 023105. [Google Scholar] [CrossRef]
- Nagarajan, R.; Kato, M.; Pleumeekers, J.; Evans, P.; Corzine, S.; Hurtt, S.; Dentai, A.; Murthy, S.; Missey, M.; Muthiah, R.; et al. InP Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1113–1125. [Google Scholar] [CrossRef]
- Guo, W.; Binetti, P.R.A.; Althouse, C.; Mašanović, M.L.; Ambrosius, H.P.M.M.; Johansson, L.A.; Coldren, L.A. Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6100212. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Bowers, J. Dense III-V/Si Phase Shifters for Optical Phased Arrays. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Xie, W.; Bowers, J. High-performance III-V/Si Phase Shifter Arrays for Beam Steering. In Proceedings of the 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM), Ft. Lauderdale, FL, USA, 8–10 July 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars [Invited]. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef]
- Hulme, J.C.; Doylend, J.K.; Heck, M.J.R.; Peters, J.D.; Davenport, M.L.; Bovington, J.T.; Coldren, L.A.; Bowers, J.E. Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express 2015, 23, 5861–5874. [Google Scholar] [CrossRef] [PubMed]
- Haines, J.; Vitali, V.; Bottrill, K.; Naik, P.U.; Gandolfi, M.; Angelis, C.D.; Franz, Y.; Lacava, C.; Petropoulos, P.; Guasoni, M. Fabrication of 1 × N integrated power splitters with arbitrary power ratio for single and multimode photonics. Nanophotonics 2024, 13, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Franz, Y.; Guasoni, M. Compact 1 × N power splitters with arbitrary power ratio for integrated multimode photonics. J. Opt. 2021, 23, 095802. [Google Scholar] [CrossRef]
- Fang, Y.; Qinggui, T.; Guangyao, W.; Rui, Y.; Wei, H. Fast and large-angle optical beam deflection based on liquid crystal polarization grating. Chin. J. Liq. Cryst. Displays 2022, 37, 1411–1419. [Google Scholar] [CrossRef]
- Chen, B.S.; Li, Y.Z.; Xie, Q.J.; Na, Q.X.; Tao, M.; Wang, Z.M.; Zhi, Z.H.; Hu, H.M.; Li, X.T.; Qu, H.; et al. SiN-On-SOI Optical Phased Array LiDAR for Ultra-Wide Field of View and 4D Sensing. Laser Photonics Rev. 2024, 18. [Google Scholar] [CrossRef]
Platform | Scale | FOV (°) × (°) | Response Time (ms) | Angular Resolution (°) × (°) | Wavelength (nm) | Diffractive Efficiency (%) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
LC | 1 × 4096 | 10 × – | 100 | – | 1550 | – | 2004 | [67] |
LC | 1 × 12,288 | 6.95 × – | 24.8 | – | 1550 | – | 2006 | [69] |
LC | 256 × 256 | 4 × – | – | – | 633 | 75 | 2008 | [70] |
LC | – | 24 × 24 | 17.2 | 0.001 × 0.001 | 1550 | – | 2022 | [85] |
LC | 1900 × 1200 | 360 × 1.1 | – | 0.2 × 0.03 | 632.8 | 80–91 | 2025 | [86] |
LC | 1900 × 1200 | 360 × 2.1 | – | 0.04 × – | 632.8 | 80–91 | 2025 | [74] |
Platform | Scale | FOV (°) × (°) | Response Time (ns) | Angular Resolution (°) × (°) | Wavelength (nm) | Bandwidth (GHz) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
LN | 7 | 0.24 × – | 25 | 0.03 × – | 980 | 10 | 2014 | [13] |
LN | 64 | 0.57 × 0.57 | – | 0.07 × 0.07 | 1550 | 0.4 | 2021 | [14] |
LN | – | 21.22 × – | 1376 | – | 1550 | 40 | 2025 | [113] |
TFLN | 16 | 24 × 8 | 0.23 | 2 × 0.6 | 1550–1600 | 4.2 | 2023 | [104] |
TFLN | 16 | 50 × 8.6 | 0.4 | 0.73 × 2.8 | 1550 | 2.5 | 2023 | [106] |
TFLN | 32 | 62.2 × 8.8 | 14.4 | 2.4 × 1.2 | 1550 | – | 2024 | [108] |
TFLN | 48 | 40 × 8.8 | 14.4 | 0.33 × 1.8 | 1550 | – | 2024 | [108] |
TFLN | 16 | 62 × 7.6 | 26 | 3.2 × 1.4 | 1550 | – | 2025 | [114] |
TFLN | 128 | 80 × 5 | – | 0.01 × 0.037 | 1550 | 3 | 2025 | [112] |
Platform | Scale | FOV (°) × (°) | Response Time (μs) | Angular Resolution (°) × (°) | Wavelength (nm) | Year | Ref. |
---|---|---|---|---|---|---|---|
Si | 16 | 14.1 × – | – | 2.7 × 2.5 | 1550 | 2009 | [125] |
Si | 4096 | – | – | – | 1550 | 2013 | [116] |
Si | 8192 | 100 × – | 30 | 0.01 × 0.039 | – | 2022 | [119] |
SiN | 1024 | 146 × – | – | 0.064 × 0.074 | 635 | 2017 | [131] |
SiN | 64 | 35.5 × 22.7 | – | 0.69 × 0.075 | 1550 | 2021 | [135] |
SiN | 128 | 150 × 16 | – | 0.022 × 0.060 | 1550 | 2025 | [138] |
Si-SiN | 256 | 16.1 × 45.6 | – | 0.044 × 0.154 | 1550 | 2022 | [140] |
Si-SiN | 256 | 14.8 × 150 | – | 0.068 × 0.066 | 1550 | 2023 | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, J.; Yang, Z.; Zhang, Y.; Leng, J.; Yu, Q.; Wu, J. On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms. Nanomaterials 2025, 15, 1374. https://doi.org/10.3390/nano15171374
Wang X, Guo J, Yang Z, Zhang Y, Leng J, Yu Q, Wu J. On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms. Nanomaterials. 2025; 15(17):1374. https://doi.org/10.3390/nano15171374
Chicago/Turabian StyleWang, Xiaobin, Junliang Guo, Zixin Yang, Yuqiu Zhang, Jinyong Leng, Qiang Yu, and Jian Wu. 2025. "On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms" Nanomaterials 15, no. 17: 1374. https://doi.org/10.3390/nano15171374
APA StyleWang, X., Guo, J., Yang, Z., Zhang, Y., Leng, J., Yu, Q., & Wu, J. (2025). On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms. Nanomaterials, 15(17), 1374. https://doi.org/10.3390/nano15171374