Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of RE-Doped ZnO Nanostructured Microclusters
2.2. Preparation of Thin Films by Drop-Casting
2.3. Characterization Techniques
3. Results and Discussion
3.1. Morphological Analysis of RE:ZnO Thin Films
3.2. Structural Analysis: XRD and Rietveld Refinement
3.3. Raman Spectroscopy
3.4. Elemental Composition and Dopant Distribution (EDX Analysis)
3.5. Optical Properties: UV-Vis Absorption and Bandgap Analysis
3.6. Comparative Discussion and Application Relevance
4. Conclusions
- (i)
- Optimizing deposition parameters and substrate treatments to improve adhesion and film continuity;
- (ii)
- Extending the doping strategy to other rare-earth and transition-metal ions to further tune optical and electronic behavior;
- (iii)
- Integrating the films into prototype optoelectronic devices to assess their functional advantages over conventional ZnO;
- (iv)
- Performing in situ studies under operational conditions to better understand stability, defect dynamics, and performance evolution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ZnO | Zinc Oxide |
RE | Rare-Earth |
La | Lanthanum |
Er | Erbium |
Sm | Samarium |
XRD | X-ray Diffraction |
SEM | Scanning Electron Microscopy |
EDX | Energy Dispersive X-ray Spectroscopy |
UV–Vis | Ultraviolet–Visible Spectroscopy |
PL | Photoluminescence |
Eg | Optical Bandgap Energy |
λ | Wavelength |
D | Crystallite Size |
ε | Microstrain |
δ | Dislocation Density |
τZnO | Crystallite Size of ZnO phase from Rietveld refinement |
τsecondary | Crystallite Size of Secondary Phase |
εZnO | Microstrain of ZnO phase from Rietveld refinement |
εsecondary | Microstrain of Secondary Phase |
nm | Nanometer |
eV | Electron Volt |
at.% | Atomic Percent |
Tauc plot | Graphical Method to Estimate Bandgap from UV–Vis Absorption |
O2 | Molecular Oxygen |
RE:ZnO | Rare-Earth-Doped ZnO Thin Film |
Appendix A
Sample Films | Nanoparticles | Nanorods (nm) | |
---|---|---|---|
Length | Width | ||
0.1% La:ZnO | |||
0.5% La:ZnO | |||
1% La:ZnO | |||
2.5% La:ZnO | |||
5% La:ZnO |
Sample Film | NPS | NRDs—Length | NRDs—Width | ||||||
---|---|---|---|---|---|---|---|---|---|
Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | |
0.1%La:ZnO | 25–109 | 34–75 | 54 ± 21 | 194–850 | 227–490 | 350 ± 139 | 50–86 | 60–79 | 70 ± 8 |
0.5%La:ZnO | 45–134 | 62–98 | 81 ± 16 | 202–638 | 242–415 | 328 ± 81 | 45–98 | 60–85 | 72 ± 11 |
1%La: ZnO | 38–147 | 64–110 | 87 ± 21 | 200–700 | 273–472 | 370 ± 95 | 35–70 | 43–61 | 52 ± 7 |
2.5%La:ZnO | 37–127 | 50–90 | 71 ± 18 | 205–660 | 262–470 | 367 ± 93 | 41–117 | 58–96 | 68 ± 11 |
5%La: ZnO | 36–110 | 50–88 | 70 ± 18 | 225–1309 | 230–652 | 442 ± 138 | 68–93 | 57–110 | 80 ± 11 |
Sample Films | Nanoparticles | Nanorods (nm) | |
---|---|---|---|
Length | Width | ||
0.1% Er:ZnO | |||
0.5% Er:ZnO | |||
1% Er:ZnO | |||
2.5% Er:ZnO | |||
5% Er:ZnO |
Sample Film | NPS | NRDs—Length | NRDs—Width | ||||||
---|---|---|---|---|---|---|---|---|---|
Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | |
0.1% Er:ZnO | 24–160 | 43–90 | 70 ± 22 | 110–324 | 132–232 | 182 ± 44 | 27–102 | 40–70 | 54 ± 12 |
0.5% Er:ZnO | 38–135 | 52–107 | 79 ± 24 | 270–763 | 308–493 | 400 ± 81 | 22–82 | 32–58 | 46 ± 12 |
1% Er: ZnO | 43–204 | 75–145 | 110 ± 30 | 269–701 | 340–530 | 433 ± 85 | 23–93 | 41–68 | 54 ± 13 |
2.5% Er:ZnO | 50–230 | 75–160 | 118 ± 40 | 373–778 | 434–618 | 526 ± 84 | 31–90 | 42–73 | 57 ± 13 |
5% Er: ZnO | 62–283 | 66–173 | 123 ± 52 | 176–652 | 227–448 | 337 ± 106 | 35–81 | 42–67 | 55 ± 12 |
Sample Films | Nanoparticles | Nanorods (nm) | |
---|---|---|---|
Length | Width | ||
0.1% Sm:ZnO | |||
0.5% Sm:ZnO | |||
1% Sm:ZnO | |||
2.5% Sm:ZnO | |||
5% Sm:ZnO |
Sample Film | NPS | NRDs—Length | NRDs—Width | ||||||
---|---|---|---|---|---|---|---|---|---|
Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | Min–Max (nm) | FWHM (nm) | Mean ± SD (nm) | |
0.1% Sm:ZnO | 23–75 | 32–53 | 42 ± 10 | 281–494 | 220–358 | 292 ± 70 | 22–108 | 46–80 | 61 ± 17 |
0.5% Sm:ZnO | 27–87 | 37–60 | 48 ± 11 | 193–635 | 240–390 | 319 ± 72 | 41–73 | 55–93 | 72 ± 19 |
1% Sm: ZnO | 32–105 | 42–73 | 57 ± 14 | 216–578 | 282–442 | 361 ± 80 | 44–110 | 54–81 | 66 ± 12 |
2.5% Sm:ZnO | 24–111 | 38–63 | 50 ± 11 | 360–1442 | 418–804 | 611 ± 190 | 33–100 | 40–66 | 53 ± 13 |
5% Sm: ZnO | 51–188 | 60–108 | 84 ± 22 | 301–744 | 365–564 | 499 ± 98 | 42–128 | 60–95 | 78 ± 16 |
Elemental Composition and Dopant Distribution (EDX Analysis)
Sample | Element | Weight% | Atomic% |
0.1% La-doped ZnO | Ok | 15 | 14.8 |
Znk | 84.84 | 58.13 | |
LaL | 0.23 | 0.08 | |
0.5% La-doped ZnO | Ok | 14 | 41.80 |
Znk | 83.88 | 58.49 | |
LaL | 1.75 | 0.57 | |
1% La-doped ZnO | Ok | 17 | 45.35 |
Znk | 80.48 | 53.74 | |
LaL | 2.90 | 0.91 | |
2.5% La-doped ZnO | Ok | 15 | 42.34 |
Znk | 77.66 | 55.08 | |
LaL | 7.73 | 2.58 | |
5% La-doped ZnO | Ok | 18 | 50.22 |
Znk | 60.57 | 42.54 | |
LaL | 21.92 | 7.24 |
Sample | Element | Weight% | Atomic% |
0.1% Er:ZnO | Ok | 19.22 | 49.35 |
ErL | 0.32 | 0.08 | |
Znk | 80.47 | 50.58 | |
0.5% Er:ZnO | Ok | 16.36 | 44.64 |
ErL | 1.20 | 0.31 | |
Znk | 82.44 | 55.05 | |
1% Er:ZnO | Ok | 14.35 | 41.25 |
ErL | 3.52 | 0.97 | |
Znk | 82.13 | 57.78 | |
2.5% Er:ZnO | Ok | 13.87 | 41.17 |
ErL | 8.41 | 2.38 | |
Znk | 77.72 | 56.45 | |
5%Er:ZnO | Ok | 17.72 | 50.17 |
ErL | 17.00 | 4.60 | |
Znk | 65.28 | 45.23 |
Sample | Element | Weight% | Atomic% |
0.1% Sm-doped ZnO | Ok | 10.51 | 32.96 |
SmL | 2.41 | 0.60 | |
Znk | 87.08 | 66.44 | |
0.5% Sm-doped ZnO | Ok | 11.72 | 35.56 |
SmL | 2.60 | 0.84 | |
Znk | 85.68 | 35.56 | |
1% Sm-doped ZnO | Ok | 11.86 | 35.98 |
SmL | 3.42 | 1.11 | |
Znk | 84.72 | 62.92 | |
2.5% Sm-doped ZnO | Ok | 13.03 | 39.17 |
SmL | 7.56 | 2.42 | |
Znk | 79.41 | 58.41 | |
5% Sm-doped ZnO | Ok | 13.65 | 41.52 |
SmL | 13.78 | 4.46 | |
Znk | 72.57 | 54.02 |
Appendix B
Samples | Eg (eV) |
---|---|
ZnO- Reference | 3.341 |
La:ZnO (0.1%) | 2.964 |
La:ZnO (0.5%) | 2.947 |
La:ZnO (1%) | 2.952 |
La:ZnO (2.5%) | 2.958 |
La:ZnO (5%) | 2.930 |
Samples | Eg (eV) |
---|---|
ZnO- Reference | 3.341 |
Er:ZnO (0.1%) | 2.964 |
Er:ZnO (0.5%) | 2.940 |
Er:ZnO (1%) | 2.957 |
Er:ZnO (2.5%) | 2.970 |
Er:ZnO (5%) | 2.942 |
Samples | Eg (eV) |
---|---|
ZnO- Reference | 3.341 |
Sm:ZnO (0.1%) | 2.966 |
Sm:ZnO (0.5%) | 2.967 |
Sm:ZnO (1%) | 2.971 |
Sm:ZnO (2.5%) | 2.965 |
Sm:ZnO (5%) | 2.965 |
References
- Adachi, S. Optical Constants of Crystalline and Amorphous Semiconductors; Springer: Boston, MA, USA, 1999; pp. 420–430. [Google Scholar] [CrossRef]
- Ji, S.; Nafees, M. Emerging Trends in Cloud Security and Intelligent Agent; Kumar, P., Bharti, P.K., Bhushan, S., Eds.; Global Research Foundation: Delhi, India, 2023. [Google Scholar] [CrossRef]
- McGlynn, E.; Henry, M.O.; Mosnier, J.-P. Oxford Handbook of Nanoscience and Technology: Volume 2: Materials: Structures, Properties and Characterization Techniques (Oxford Handbooks); Oxford University Press: New York, NY, USA, 2010; pp. 523–571. [Google Scholar] [CrossRef]
- Kumawat, A.; Misra, K.P.; Chattopadhyay, S. Band Gap Engineering and Relationship with Luminescence in Rare-Earth Elements Doped ZnO: An Overview. Mater. Technol. 2022, 37, 1595–1610. [Google Scholar] [CrossRef]
- Milanova, M.; Tsvetkov, M. Rare Earths Doped Materials. Crystals 2021, 11, 231. [Google Scholar] [CrossRef]
- Ji, S.; Yin, L.; Liu, G.; Zhang, L.; Ye, C. Synthesis of Rare Earth Ions-Doped ZnO Nanostructures with Efficient Host−Guest Energy Transfer. J. Phys. Chem. C 2009, 113, 16439–16444. [Google Scholar] [CrossRef]
- Duraimurugan, J.; Kumar, G.S.; Venkatesh, M.; Maadeswaran, P.; Girija, E.K. Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties. J. Mater. Sci. Mater. Electron. 2018, 29, 9339–9346. [Google Scholar] [CrossRef]
- Pauporté, T. Design of Solution-Grown ZnO Nanostructures; Springer: New York, NY, USA, 2009; pp. 77–125. [Google Scholar] [CrossRef]
- Layek, A.; Banerjee, S.; Manna, B.; Chowdhury, A. Synthesis of rare-earth doped ZnO nanorods and their defect–dopant correlated enhanced visible-orange luminescence. RSC Adv. 2016, 6, 35892–35900. [Google Scholar] [CrossRef]
- Liu, J.; Chang, M.-J.; Du, H.-L. Controllable growth of highly organized ZnO nanowires using templates of electrospun nanofibers. J. Mater. Sci. Mater. Electron. 2016, 27, 7124–7131. [Google Scholar] [CrossRef]
- Sosa-Marquez, J.; Maldonado-Orozco, M.C.; Espinosa-Magana, F.; Ochoa-Lara, M. ZnO Nanofibers Easily Synthesized by Electrospinning. A New Formula. Microsc. Microanal. 2015, 21, 1025–1026. [Google Scholar] [CrossRef]
- Pascariu, P.; Nedelcu, O.T.; Sandu, T.; Romanitan, C.; Brincoveanu, O.; Pachiu, C.; Manica, D.; Manica, M.; Popescu, A.G.M.; Antohe, S.; et al. Lanthanum doping effects on microstructure and properties of nanostructured ZnO. Mater. Charact. 2025, 224, 114994. [Google Scholar] [CrossRef]
- Sood, S.; Kumar, P.; Raina, I.; Misra, M.; Kaushal, S.; Gaur, J.; Kumar, S.; Singh, G. Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics 2025, 12, 454. [Google Scholar] [CrossRef]
- de Andrade Neto, N.F.; de Carvalho, R.G.; Garcia, L.M.P.; Nascimento, R.M.; Paskocimas, C.A.; Longo, E.; Bomio Delmonte, M.R.; da Motta, F.V. Influence of doping with Sm3⁺ on photocatalytic reuse of ZnO thin films obtained by spin coating. Matéria 2019, 24, e12489. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Sahar, M.; Riaz, S.; Naseem, S.; Saddiqe, Z. Enhanced magnetic, antibacterial and optical properties of Sm doped ZnO thin films: Role of Sm doping. Opt. Mater. 2020, 108, 110457. [Google Scholar] [CrossRef]
- Tudose, I.V.; Pascariu, P.; Pachiu, C.; Comanescu, F.; Danila, M.; Gavrila, R.; Koudoumas, E.; Suchea, M. Comparative Study of Sm and La Doped ZnO Properties. In Proceedings of the 2018 International Semiconductor Conference (CAS), Sinaia, Romania, 10–12 October 2018; pp. 245–248. [Google Scholar]
- Nyarige, J.S.; Nambala, F.; Diale, M. A comparative study on the properties of Er Zn O and Sm Zn O nanostructured thin films for electronic device applications. Mater. Today Commun. 2022, 33, 104441. [Google Scholar] [CrossRef]
- Ali, D.; Butt, M.; Muneer, I.; Farrukh, M.; Aftab, M.; Saleem, M.; Bashir, F.; Khan, A. Synthesis and characterization of sol-gel derived La and Sm doped ZnO thin films: A solar light photo catalyst for methylene blue. Thin Solid Film. 2019, 679, 86–98. [Google Scholar] [CrossRef]
- Cojocaru, C.; Pascariu, P.; Romanitan, C.; Silion, M.; Samoila, P.; Serban, A.B. Intensification of organic pollutant degradation under visible light irradiation using ZnO nanostructured photocatalysts doped with praseodymium. Appl. Surf. Sci. 2024, 661, 160042. [Google Scholar] [CrossRef]
- Kumar, D.R.; Haldorai, Y.; Rajendra Kumar, R.T. Rare Earth Metals Doped ZnO Nanomaterials: Synthesis, Photocatalytic, and Magnetic Properties. Mater. Sci. Eng. 2024, 279–297. [Google Scholar] [CrossRef]
- Shabbir, A.; Khan, Z.S.; Pervaiz, H.; Haseeb, H.M. Rare-Earth Ion-Doped Zinc Oxide as a Viable Photoanode Material for Dye-Sensitized Solar Cells: Optoelectrical and Wettability Aspects. In Proceedings of the IEEC 2023, Karachi, Pakistan, 25–26 August 2023; p. 19. [Google Scholar]
- Hassan, S.M.U.; Akram, W.; Noureen, A.; Ahmed, F.; Hassan, A.; Ullah, A. Advances in transition metals and rare earth elements doped ZnO as thermoluminescence dosimetry material. Radiat. Phys. Chem. 2024, 223, 111929. [Google Scholar] [CrossRef]
- El Fakir, A.; Sekkati, M.; Schmerber, G.; Belayachi, A.; Edfouf, Z.; Regragui, M.; El Moursli, F.C.; Sekkat, Z.; Dinia, A.; Slaoui, A.; et al. Influence of Rare Earth (Nd and Tb) Co-Doping on ZnO Thin Films Properties. Phys. Status Solidic 2017, 14, 1700169. [Google Scholar]
- Ji, W.; Li, L.; Song, W.; Wang, X.; Zhao, B.; Ozaki, Y. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angew. Chem. 2019, 131, 14594–14598. [Google Scholar] [CrossRef]
Sample | τ_ZnO (nm) | τ_Secondary (nm) | ε_ZnO (%) | ε_Secondary (%) |
---|---|---|---|---|
ZnO (undoped) | 23.3 | — | +0.06 | — |
0.1% La:ZnO | 23.9 | — | +0.18 | — |
1% La:ZnO | 24.8 | — | +0.24 | — |
2.5% La:ZnO | 24.4 | 12.5 | +0.20 | +0.32 |
5% La:ZnO | 22.9 | 14.9 | +0.16 | +0.29 |
0.1% Er:ZnO | 21.0 | — | +0.09 | — |
0.5% Er:ZnO | 23.2 | — | +0.21 | — |
1% Er:ZnO | 20.8 | — | +0.16 | — |
2.5% Er:ZnO | 23.2 | 8.9 | +0.25 | +0.36 |
5% Er:ZnO | 21.2 | 9.2 | +0.21 | +0.28 |
0.1% Sm:ZnO | 22.0 | — | +0.16 | — |
0.5% Sm:ZnO | 22.7 | — | +0.23 | — |
1% Sm:ZnO | 21.2 | — | +0.20 | — |
2.5% Sm:ZnO | 21.9 | 9.2 | +0.15 | +0.26 |
5% Sm:ZnO | 22.5 | 12.3 | +0.19 | +0.24 |
Sample | E2 (high) Position (cm−1) | FWHM (Qualitative) | Defect/Secondary Modes |
---|---|---|---|
Pure ZnO | 437.0 | Sharp | None |
La:ZnO 0.1% | 436.8 | Slightly broadened | Weak ~580 |
La:ZnO 0.5% | 436.2 | Moderate | 580 |
La:ZnO 1% | 435.6 | Moderate | 580, ~330 |
La:ZnO 2.5% | 435.0 | Broad | 580, ~330 |
La:ZnO 5% | 434.8 | Broad | 580, ~330 |
Er:ZnO 0.1% | 436.7 | Slightly broadened | 580 |
Er:ZnO 0.5% | 435.9 | Moderate | 580, ~655 |
Er:ZnO 1% | 435.0 | Broad | 580, 655, 330 |
Er:ZnO 2.5% | 434.2 | Very broad | 580, 655, 330 |
Er:ZnO 5% | 434.0 | Very broad | 580, 655, 330 |
Sm:ZnO 0.1% | 436.6 | Slightly broadened | Weak ~580 |
Sm:ZnO 0.5% | 435.6 | Moderate | 580, ~610 |
Sm:ZnO 1% | 434.9 | Moderate | 580, 610, 330 |
Sm:ZnO 2.5% | 434.2 | Broad | 580, 610, 330 |
Sm:ZnO 5% | 434.0 | Very broad | 580, 610, 330 |
Sample | Element | Wt.% | At.% | Sample | Element | Wt.% | At.% | Sample | Element | Wt.% | At.% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1% La:ZnO | Ok | 15 | 14.8 | 0.1% Er:ZnO | Ok | 19.22 | 49.35 | 0.1% Sm: ZnO | Ok | 10.51 | 32.96 |
Znk | 84.84 | 58.13 | ErL | 0.32 | 0.08 | SmL | 2.41 | 0.60 | |||
LaL | 0.23 | 0.08 | Znk | 80.47 | 50.58 | Znk | 87.08 | 66.44 | |||
0.5% La:ZnO | Ok | 14 | 41.80 | 0.5% Er:ZnO | Ok | 16.36 | 44.64 | 0.5% Sm: ZnO | Ok | 11.72 | 35.56 |
Znk | 83.88 | 58.49 | ErL | 1.20 | 0.31 | SmL | 2.60 | 0.84 | |||
LaL | 1.75 | 0.57 | Znk | 82.44 | 55.05 | Znk | 85.68 | 35.56 | |||
1% La:ZnO | Ok | 17 | 45.35 | 1% Er:ZnO | Ok | 14.35 | 41.25 | 1% Sm: ZnO | Ok | 11.86 | 35.98 |
Znk | 80.48 | 53.74 | ErL | 3.52 | 0.97 | SmL | 3.42 | 1.11 | |||
LaL | 2.90 | 0.91 | Znk | 82.13 | 57.78 | Znk | 84.72 | 62.92 | |||
2.5% La:ZnO | Ok | 15 | 42.34 | 2.5% Er:ZnO | Ok | 13.87 | 41.17 | 2.5% Sm: ZnO | Ok | 13.03 | 39.17 |
Znk | 77.66 | 55.08 | ErL | 8.41 | 2.38 | SmL | 7.56 | 2.42 | |||
LaL | 7.73 | 2.58 | Znk | 77.72 | 56.45 | Znk | 79.41 | 58.41 | |||
5% La:ZnO | Ok | 18 | 50.22 | 5% Er:ZnO | Ok | 17.72 | 50.17 | 5% Sm: ZnO | Ok | 13.65 | 41.52 |
Znk | 60.57 | 42.54 | ErL | 17.00 | 4.60 | SmL | 13.78 | 4.46 | |||
LaL | 21.92 | 7.24 | Znk | 65.28 | 45.23 | Znk | 72.57 | 54.02 |
Dopant | Concentration (at.%) | Eg (eV) |
---|---|---|
None | 0.0 | 3.34 |
La | 0.1 | 2.96 |
La | 0.5 | 2.95 |
La | 1.0 | 2.95 |
La | 2.5 | 2.96 |
La | 5.0 | 2.93 |
Er | 0.1 | 2.96 |
Er | 0.5 | 2.94 |
Er | 1.0 | 2.96 |
Er | 2.5 | 2.97 |
Er | 5.0 | 2.94 |
Sm | 0.1 | 2.97 |
Sm | 0.5 | 2.97 |
Sm | 1.0 | 2.97 |
Sm | 2.5 | 2.97 |
Sm | 5.0 | 2.97 |
Property/Sample | Pure ZnO | La:ZnO | Er:ZnO | Sm:ZnO |
---|---|---|---|---|
Morphology | Nanoparticles, uniform | Nanoparticles + nanorods at all concentrations; longest at 5% | Only spherical particles; increased coalescence with concentration | Nanoparticles + pronounced nanorods at ≥2.5% |
Particle Size (nm) | ~50–60 | 54.4 → 69.4 (max at 1%: 86.6) | 66.9 → 133.1 (monotonic increase) | 42.3 → 84.1 (sharp increase at 5%) |
Nanorod Length (nm) | None | 327.5 → 442.3 | Not observed | 291.8 → 938.6 |
Secondary Phases | None | La(OH)3 at ≥2.5% | Er2O3 at ≥1% | Sm2O3 at ≥2.5% |
Crystallite Size (nm) | 23.3 | ~24.8 (ZnO), ~15 (La(OH)3) | ~21 (ZnO), ~9 (Er2O3) | ~22 (ZnO), ~12 (Sm2O3) |
Microstrain (%) | +0.06 | +0.24 (ZnO)/+0.29 (secondary) | +0.21/+0.28 | +0.19/+0.24 |
Raman E2 (high) peak | Strong, sharp | Broadened and weakened at ≥1% | Shifted, suppressed at ≥2.5% | Slightly broadened; defect-related modes appear at ≥2.5% |
New Raman modes | None | La-induced at ~391 and ~1150 cm−1 | Er–O and Er2O3 bands at 150–800 cm−1 | Sm2O3 modes at 490, 678 cm−1 |
Eg (eV) | ~2.97 | 2.96 → 2.93 (decrease with conc.) | 2.96 → 2.97 (non-monotonic) | 2.97 → 2.97 (stable) |
Transparency (Vis) | ~70% | ~70% | ~70% | ~70% |
EDX Distribution of dopant | — | Uniform | Uniform | Uniform |
Film Adhesion | Moderate | Moderate | Moderate | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manica, M.; Suchea, M.P.; Manica, D.; Pascariu, P.; Brincoveanu, O.; Romanitan, C.; Pachiu, C.; Dinescu, A.; Muller, R.; Antohe, S.; et al. Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination. Nanomaterials 2025, 15, 1369. https://doi.org/10.3390/nano15171369
Manica M, Suchea MP, Manica D, Pascariu P, Brincoveanu O, Romanitan C, Pachiu C, Dinescu A, Muller R, Antohe S, et al. Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination. Nanomaterials. 2025; 15(17):1369. https://doi.org/10.3390/nano15171369
Chicago/Turabian StyleManica, Marina, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, and et al. 2025. "Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination" Nanomaterials 15, no. 17: 1369. https://doi.org/10.3390/nano15171369
APA StyleManica, M., Suchea, M. P., Manica, D., Pascariu, P., Brincoveanu, O., Romanitan, C., Pachiu, C., Dinescu, A., Muller, R., Antohe, S., Manoli, D. M., & Koudoumas, E. (2025). Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination. Nanomaterials, 15(17), 1369. https://doi.org/10.3390/nano15171369