Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface
Abstract
1. Introduction
2. Results
2.1. AgNP@RHsil Nanoparticles Synthesis and Inclusion in Polymer Matrix
2.2. AgNP@RHsil Nanoparticles Characterization Without and Within the Polymer
2.3. Antimicrobial Capacity of AgNP@RHsil Without and Within the Polymer
2.4. Leaching Tests
3. Discussion
4. Methods and Materials
4.1. Materials and Equipment
4.2. AgNP@RHsil Nanoparticles Synthesis and Inclusion in the Polymer
4.2.1. AgNP Synthesis in Flow
4.2.2. RH Preparation and Purification
4.2.3. Silica Extraction and Functionalization
4.2.4. Preparation of AgNP Embedded on RHsil (AgNP@RHsil)
4.2.5. AgNP@RHsil Inclusion into a Polymer Film
4.3. Characterization of AgNP@RHsil Without and Within the Polymer
4.4. Antimicrobial Capacity of AgNP@RHsil Without and Within the Polymer
4.5. Leaching Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- George, C.M.; Cirhuza, L.B.; Kuhl, J.; Williams, C.; Coglianese, N.; Thomas, E.; Bauler, S.; Francois, R.; Saxton, R.; Presence, A.S.; et al. Child Mouthing of Feces and Fomites and Animal Contact are Associated with Diarrhea and Impaired Growth Among Young Children in the Democratic Republic of the Congo: A Prospective Cohort Study (REDUCE Program). J. Pediatr. 2021, 228, 110–116.e1. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.G.; French, G.L. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am. J. Infect. Cont. 2013, 41, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Chen, T. A Rapid Review of Disinfectant Chemical Exposures and Health Effects During COVID-19 Pandemic; National Collaborating Centre for Environmental Health: Vancouver, BC, Canada, 2020. [Google Scholar]
- Salonen, H.; Salthammer, T.; Castagnoli, E.; Taubel, M.; Morawska, L. Cleaning products: Their chemistry, effects on indoor air quality, and implications for human health. Environ. Int. 2024, 190, 108836. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. Int. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Jose, A.; Gizdavic-Nikolaidis, M.; Swift, S. Antimicrobial Coatings: Reviewing Options for Healthcare Applications. Appl. Microbiol. 2023, 3, 145–174. [Google Scholar] [CrossRef]
- Barrocas, B.T.; Fernandes, S.M.; Alcobia, T.; Lourenço, M.C.; Oliveira, M.C.; Marques, A.C. Optimization of TiO2 loaded sol-gel derived MICROSCAFS® for enhanced minocycline removal from water and real wastewater. J. Sol.-Gel Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Blaskovicova, J.; Labuda, J. Effect of Triclosan and Silver Nanoparticles on DNA Damage Investigated with DNA-Based Biosensor. Sensors 2022, 22, 4332. [Google Scholar] [CrossRef]
- Langiano, F.; Fernandes, S.M.; Barrocas, B.T.; Del Tedesco, A.; Riello, P.; Ferreira, M.J.; Marques, A.C.; Sgarzi, M.; Gigli, M.; Crestini, C. Rice husk silica derived MICROSCAFS® for a green solar-driven photodegradation of minocycline in aqueous media. J. Water Proc. Eng. 2025, 70, 107003. [Google Scholar] [CrossRef]
- Attol, D.H.; Mihsen, H.H.; Jaber, S.A.; Alwazni, W.S.; Eesa, M.T. Synthesis of Organic Functionalized Silica from Rice Husk as an Antibacterial Agents. Silicon 2023, 15, 2349–2357. [Google Scholar] [CrossRef]
- Alhadhrami, A.; Mohamed, G.G.; Sadek, A.H.; Ismail, S.H.; Ebnalwaled, A.A.; Almalki, A.S.A. Behavior of Silica Nanoparticles Synthesized from Rice Husk Ash by the Sol–Gel Method as a Photocatalytic and Antibacterial Agent. Materials 2022, 15, 8211. [Google Scholar] [CrossRef]
- Hohm, T.; Preuten, T.; Fankhauser, C. Phototropism: Translating light into directional growth. Am. J. Bot. 2013, 100, 47–59. [Google Scholar] [CrossRef]
- Frank, C.J.; Bourgonje, C.R.; Yaghmaei, M.; Scaiano, J.C. A color-coordinated approach to the flow synthesis of silver nanoparticles with custom morphologies. Nanoscale Adv. 2025, 7, 1163–1172. [Google Scholar] [CrossRef]
- Shrestha, D.; Nayaju, T.; Kandel, M.R.; Pradhananga, R.R.; Park, C.H.; Kim, C.S. Rice husk-derived mesoporous biogenic silica nanoparticles for gravity chromatography. Heliyon 2023, 9, e15142. [Google Scholar] [CrossRef]
- Popova, M.; Mitova, V.; Dimitrov, M.; Rosmini, C.; Tsacheva, I.; Shestakova, P.; Karashanova, D.; Karadjova, I.; Koseva, N. Mesoporous Silica with an Alveolar Construction Obtained by Eco-Friendly Treatment of Rice Husks. Molecules 2024, 29, 3540. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, C.R.; da Silva, D.R.C.; McIlroy, E.; Calvert, N.D.; Shuhendler, A.J.; Scaiano, J.C. Silver nanoparticles with exceptional near-infrared absorbance for photoenhanced antimicrobial applications. J. Mater. Chem. B 2023, 11, 6114–6122. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.M.; Pan, L.; Lin, H.H.; Chang, H.C. Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Sci. Rep. 2019, 9, 13164. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kwon, S.J.; Wu, X.; Sauve, J.; Lee, I.; Nam, J.; Kim, J.; Dordick, J.S. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates. ACS Appl. Mater. Interf. 2018, 10, 13317–13324. [Google Scholar] [CrossRef]
- Paramesh, C.C.; Giridasappa, A.; Siddegowda, A.K.C.; Rangappa, D.; Shivaramu, P.D. History, introduction, and physicochemical properties of silver nanoparticles. In Silver Nanoparticles for Drug Delivery; Academic Press: Cambridge, MA, USA, 2024; pp. 1–38. [Google Scholar]
- Li, H.; Xu, H. Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review. Environ. Res. 2024, 248, 118313. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Lin, Z.; Gu, F.; Lau, S.P.; Li, L.; Chai, Y. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature. Nanoscale 2015, 7, 13420–13426. [Google Scholar] [CrossRef]
- Bai, W.; Liang, B.; Luo, B.; Wang, J.; Zhang, H.; Zhang, X.; Yang, L.; Xu, Y.; Li, Y. Ultra-High Bromine Removal from Waste Water and Downstream High-Value Utilization Using Melanin-Like Polymers. Small 2025, 21, 2410496. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, L.; Yang, F.; Bai, W.; Zhang, X.; Li, H.; Duan, G.; Xu, Y.; Li, Y. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. Mater. Horiz. 2023, 10, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Adam, F.; Appaturi, J.N.; Iqbal, A. The utilization of rice husk silica as a catalyst: Review and recent progress. Catal. Today 2012, 190, 2–14. [Google Scholar] [CrossRef]
- Pastor, A.; Balbuena, J.; Cruz-Yusta, M.; Pavlovic, I.; Sánchez, L. ZnO on rice husk: A sustainable photocatalyst for urban air purification. Chem. Eng. J. 2019, 368, 659–667. [Google Scholar] [CrossRef]
- He, D.; Ikeda-Ohno, A.; Boland, D.D.; Waite, T.D. Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. Environ. Sci. Technol. 2013, 47, 5276–5284. [Google Scholar] [CrossRef]
- Ghobadi, M.; Salehi, S.; Ardestani, M.T.S.; Mousavi-Khattat, M.; Shakeran, Z.; Khosravi, A.; Cordani, M.; Zarrabi, A. Amine-functionalized mesoporous silica nanoparticles decorated by silver nanoparticles for delivery of doxorubicin in breast and cervical cancer cells. Eur. J. Pharm. Biopharm. 2024, 201, 114349. [Google Scholar] [CrossRef]
- Mierina, I.; Grigale-Sorocina, Z.; Birks, I. The Chemistry of Behind the UV-Curable Nail Polishes. Polymers 2025, 17, 1166. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Silver Nanoparticle-Based Antimicrobial Coatings: Sustainable Strategies for Microbial Contamination Control. Microbiol. Res. 2025, 16, 110. [Google Scholar] [CrossRef]
- Barrocas, B.; Nunes, C.D.; Carvalho, M.L.; Monteiro, O.C. Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation. Appl. Surf. Sci. 2016, 385, 18–27. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Silica extraction from rice husk: Comprehensive review and applications. Hybrid Adv. 2023, 4, 100111. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C. Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles. J. Am. Chem. Soc. 2010, 132, 1825–1827. [Google Scholar] [CrossRef]
- Tien, C.C.; Chang, C.H.; Liu, B.H.; Stanley, D.; Rabb, S.A.; Yu, L.L.; Nguyen, T.; Sung, L. Effects of temperature on surface accumulation and release of silica nanoparticles in an epoxy nanocoating exposed to UV radiation. In Proceedings of the Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NIST-Nanotech 2014, Washington, DC, USA, 16–19 June 2014; pp. 101–104. [Google Scholar]
- Haassan, A.O.; Ojo, B.O.; Abdulrahman, A.O. Escherichia coli as a Global Pathogen. Achiev. J. Sci. Res. 2021, 3, 212–233. [Google Scholar]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Silvero, M.J.; Argüello, G.A.; Becerra, M.C. Photodynamic Antibacterial Chemoterapy (PACT) Using Gold Nanoparticles and LED’s Irradiation. J. Nanopharm. Drug Del. 2014, 2, 148–152. [Google Scholar] [CrossRef]
- Yougbare, S.; Mutalik, C.; Krisnawati, D.I.; Kristanto, H.; Jazidie, A.; Nuh, M.; Cheng, T.M.; Kuo, T.R. Nanomaterials for the Photothermal Killing of Bacteria. Nanomaterials 2020, 10, 1123. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Huang, L.; Song, X.; Zhang, Y.; Liu, M.; Ren, Z.; Pang, L.; Peng, H.; Jiang, H. Carbon nanotube-based photothermal membrane for efficient cold air heating and removal of particulate matter and airborne bacteria. Green Carbon 2024, 2, 101–108. [Google Scholar] [CrossRef]
- Silvero, M.J.; Becerra, M.C. Plasmon-induced oxidative stress and macromolecular damage in pathogenic bacteria. RSC Adv. 2016, 6, 100203–100208. [Google Scholar] [CrossRef]
- Cao, J.; Song, Z.; Du, T.; Du, X. Antimicrobial materials based on photothermal action and their application in wound treatment. Burns Trauma 2024, 12, tkae046. [Google Scholar] [CrossRef]
- Santos, G.M.; Ferrara, F.I.d.S.; Zhao, F.; Rodrigues, D.F.; Shih, W.-C. Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays. Opt. Mater. Express 2016, 6, 1217–1229. [Google Scholar] [CrossRef]
- Yaghmaei, M.; Bourgonje, C.R.; Scaiano, J.C. Facile Scale-Up of the Flow Synthesis of Silver Nanostructures Based on Norrish Type I Photoinitiators. Molecules 2023, 28, 4445. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing, 34th ed. CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024.
- ISO 22196; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces, 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO/TR 22293:2021; Evaluation of Methods for Assessing the Release of Nanomaterials from Commercial, Nanomaterial-Containing Polymer Composites. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/73049.html (accessed on 6 July 2025).
- Zhang, Y.; Deng, W.; Wu, M.; Yu, G.; Liu, Z.; Cheng, N.; Du, H.; Liu, C.; Li, B. Engineering pulp foam with highly improved water stability and multifunctional properties by incorporation of natural rubber and montmorillonite. Green Carbon 2024, 2, 231–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, C.J.; He, V.; Scaiano, J.C.; Silvero C., M.J. Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface. Nanomaterials 2025, 15, 1224. https://doi.org/10.3390/nano15161224
Frank CJ, He V, Scaiano JC, Silvero C. MJ. Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface. Nanomaterials. 2025; 15(16):1224. https://doi.org/10.3390/nano15161224
Chicago/Turabian StyleFrank, Carly J., Vivian He, Juan C. Scaiano, and M. Jazmin Silvero C. 2025. "Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface" Nanomaterials 15, no. 16: 1224. https://doi.org/10.3390/nano15161224
APA StyleFrank, C. J., He, V., Scaiano, J. C., & Silvero C., M. J. (2025). Photoinduced Transport and Activation of Polymer-Embedded Silver on Rice Husk Silica Nanoparticles for a Reusable Antimicrobial Surface. Nanomaterials, 15(16), 1224. https://doi.org/10.3390/nano15161224