Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy
Abstract
1. Introduction
2. Search Strategy for the Literature
3. Liposomes
4. Nanobubbles
5. Nanoconstructed Hydrogels
6. Other Nanoconstructs for Ozone Delivery
7. Conclusions
Funding
Conflicts of Interest
References
- Barbe, A.; Mikhailenko, S.; Starikova, E.; Tyuterev, V. High Resolution Infrared Spectroscopy in Support of Ozone Atmospheric Monitoring and Validation of the Potential Energy Function. Molecules 2022, 27, 911. [Google Scholar] [CrossRef] [PubMed]
- Schoenbein, C.F. On the Odour Accompanying Electricity, and on the Probability of Its Dependence on the Presence of a New Substance; by C. F. Schœnbein, Professor of Chemistry, Bâle, Communicated in a Letter to Michael Faraday, Esq., D.C.L., F.R.S., &c. Proc. R. Soc. Lond. 1843, 4, 226. [Google Scholar] [CrossRef]
- Forbes, R.J. (Ed.) Martinus Van Marum. Life and Work. Volume III; H.D. Tjeenk Willink & Sons for the Dutch Academy of Sciences: Haarlem, The Netherlands, 1969. [Google Scholar]
- Schönbein, C.F. Ueber die Oxidation des Silbers und anderer Metalle durch Ozone. Ber. Verh. Nat. Ges. Basel 1851, 9, 14. [Google Scholar]
- Schönbein, C.F. Ueber des Verhalten einiger organischer Materien zum Ozon. J. Prakt. Chem. 1868, 105, 230–232. [Google Scholar]
- Schönbein, C.F. On Some Secondary Physiological Effects Produced by Atmospheric Electricity. Med. Chir. Trans. 1851, 34, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B. Ozone and Antozone, Their History and Nature When, Where, Why, How Is Ozone Observed in the Atmosphere? J. & A. Churchill: London, UK, 1873. [Google Scholar]
- Kellogg, J.H. Diphtheria: Its Causes, Prevention, and Proper Treatment; Good Health Publishing Co.: Battle Creek, MI, USA, 1879. [Google Scholar]
- Bocci, V.; Zanardi, I.; Valacchi, G.; Borrelli, E.; Travagli, V. Validity of Oxygen-Ozone Therapy as Integrated Medication Form in Chronic Inflammatory Diseases. Cardiovasc. Hematol. Disord. Drug Targets 2015, 15, 127–138. [Google Scholar] [CrossRef]
- Sciorsci, R.L.; Lillo, E.; Occhiogrosso, L.; Rizzo, A. Ozone Therapy in Veterinary Medicine: A Review. Res. Vet. Sci. 2020, 130, 240–246. [Google Scholar] [CrossRef]
- El Meligy, O.A.; Elemam, N.M.; Talaat, I.M. Ozone Therapy in Medicine and Dentistry: A Review of the Literature. Dent. J. 2023, 11, 187. [Google Scholar] [CrossRef]
- Oliveira Modena, D.A.; de Castro Ferreira, R.; Froes, P.M.; Rocha, K.C. Ozone Therapy for Dermatological Conditions: A Systematic Review. J. Clin. Aesthet. Dermatol. 2022, 15, 65–73. [Google Scholar] [PubMed]
- Hidalgo-Tallón, F.J.; Torres-Morera, L.M.; Baeza-Noci, J.; Carrillo-Izquierdo, M.D.; Pinto-Bonilla, R. Updated Review on Ozone Therapy in Pain Medicine. Front. Physiol. 2022, 13, 840623. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Jeyaraman, N.; Ramasubramanian, S.; Balaji, S.; Nallakumarasamy, A.; Patro, B.P.; Migliorini, F. Ozone Therapy in Musculoskeletal Medicine: A Comprehensive Review. Eur. J. Med. Res. 2024, 29, 398. [Google Scholar] [CrossRef] [PubMed]
- Travagli, V.; Zanardi, I.; Valacchi, G.; Bocci, V. Ozone and Ozonated Oils in Skin Diseases: A Review. Mediat. Inflamm. 2010, 2010, 610418. [Google Scholar] [CrossRef] [PubMed]
- Viebahn-Haensler, R.; León Fernández, O.S. Ozone in Medicine. The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef]
- Viebahn-Hänsler, R.; León Fernández, O.S.; Fahmy, Z. Ozone in Medicine: The Low-Dose Ozone Concept—Guidelines and Treatment Strategies. Ozone Sci. Eng. 2012, 34, 408–424. [Google Scholar] [CrossRef]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is Healing Induced via a Mild Oxidative Stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Oxidative Stress and Antioxidants: Distress or Eustress? Arch. Biochem. Biophys. 2016, 595, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Crawford, D.R.; Davies, K.J. Adaptive Response and Oxidative Stress. Environ. Health Perspect. 1994, 102 (Suppl. 10), 25–28. [Google Scholar] [CrossRef]
- Niki, E. Lipid Peroxidation: Physiological Levels and Dual Biological Effects. Free Radic. Biol. Med. 2009, 47, 469–484. [Google Scholar] [CrossRef]
- Malatesta, M.; Tabaracci, G.; Pellicciari, C. Low-Dose Ozone as a Eustress Inducer: Experimental Evidence of the Molecular Mechanisms Accounting for Its Therapeutic Action. Int. J. Mol. Sci. 2024, 25, 12657. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Bocci, V.; Acquaviva, A.; Belmonte, G.; Gardi, C.; Virgili, F.; Ciccoli, L.; Valacchi, G. NRF2 Activation Is Involved in Ozonated Human Serum Upregulation of HO-1 in Endothelial Cells. Toxicol. Appl. Pharmacol. 2013, 267, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Galiè, M.; Costanzo, M.; Nodari, A.; Boschi, F.; Calderan, L.; Mannucci, S.; Covi, V.; Tabaracci, G.; Malatesta, M. Mild Ozonisation Activates Antioxidant Cell Response by the Keap1/Nrf2 Dependent Pathway. Free Radic. Biol. Med. 2018, 124, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Siniscalco, D.; Trotta, M.C.; Brigida, A.L.; Maisto, R.; Luongo, M.; Ferraraccio, F.; D’Amico, M.; Di Filippo, C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. Biology 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Duanmu, X.; Xu, L.; Zhu, L.; Wu, Z. Ozone Pretreatment Alleviates Ischemiareperfusion Injury-Induced Myocardial Ferroptosis by Activating the Nrf2/Slc7a11/Gpx4 Axis. Biomed. Pharmacother. 2023, 165, 115185. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, S.; Xu, L.; Wu, Z. Ozone Treatment Alleviates Brain Injury in Cerebral Ischemic Rats by Inhibiting the NF-κB Signaling Pathway and Autophagy. Cell Cycle 2022, 21, 406–415. [Google Scholar] [CrossRef]
- Bocci, V.; Luzzi, E.; Corradeschi, F.; Paulesu, L.; Di Stefano, A. Studies on the Biological Effects of Ozone: 3. An Attempt to Define Conditions for Optimal Induction of Cytokines. Lymphokine Cytokine Res. 1993, 12, 121–126. [Google Scholar] [PubMed]
- Bocci, V.; Valacchi, G.; Corradeschi, F.; Fanetti, G. Studies on the Biological Effects of Ozone: 8. Effects on the Total Antioxidant Status and on Interleukin-8 Production. Mediat. Inflamm. 1998, 7, 313–317. [Google Scholar] [CrossRef]
- Valacchi, G.; Bocci, V. Studies on the Biological Effects of Ozone: 11. Release of Factors from Human Endothelial Cells. Mediat. Inflamm. 2000, 9, 271–276. [Google Scholar] [CrossRef]
- Larini, A.; Bocci, V. Effects of Ozone on Isolated Peripheral Blood Mononuclear Cells. Toxicol. In Vitro 2005, 19, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Vaillant, J.D.; Fraga, A.; Díaz, M.T.; Mallok, A.; Viebahn-Hänsler, R.; Fahmy, Z.; Barberá, A.; Delgado, L.; Menéndez, S.; Fernández, O.S.L. Ozone Oxidative Postconditioning Ameliorates Joint Damage and Decreases Pro-Inflammatory Cytokine Levels and Oxidative Stress in PG/PS-Induced Arthritis in Rats. Eur. J. Pharmacol. 2013, 714, 318–324. [Google Scholar] [CrossRef]
- Inguscio, C.R.; Cisterna, B.; Lacavalla, M.A.; Donati, F.; Angelini, O.; Tabaracci, G.; Malatesta, M. Ozone and Procaine Increase Secretion of Platelet-Derived Factors in Platelet-Rich Plasma. Eur. J. Histochem. 2023, 67, 3879. [Google Scholar] [CrossRef]
- Simonetti, V.; Quagliariello, V.; Giustetto, P.; Franzini, M.; Iaffaioli, R.V. Association of Ozone with 5-Fluorouracil and Cisplatin in Regulation of Human Colon Cancer Cell Viability: In Vitro Anti-Inflammatory Properties of Ozone in Colon Cancer Cells Exposed to Lipopolysaccharides. Evid. Based Complement. Alternat. Med. 2017, 2017, 7414083. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zhang, Y.; Jin, L.; Liu, X.; Zhu, X.; Li, Q.; Wang, Y.; Hu, L.; He, X.; Bao, H.; et al. Medical Ozone Alleviates Acute Lung Injury by Enhancing Phagocytosis Targeting NETs via AMPK/SR-A1 Axis. J. Biomed. Res. 2024, 38, 569–584. [Google Scholar] [CrossRef]
- Han, F.; Guo, J.; Mu, M.; Bian, K.; Cui, Z.; Duan, Q.; Ma, J.; Jin, L.; Liu, W.; Chen, F. Mechanism of Ozone Alleviation of Malignant Ascites in Hepatocellular Carcinoma through the Inhibition of Neutrophil Extracellular Traps. PNAS Nexus 2023, 2, pgad280. [Google Scholar] [CrossRef]
- Fuccio, C.; Luongo, C.; Capodanno, P.; Giordano, C.; Scafuro, M.A.; Siniscalco, D.; Lettieri, B.; Rossi, F.; Maione, S.; Berrino, L. A Single Subcutaneous Injection of Ozone Prevents Allodynia and Decreases the Over-Expression of pro-Inflammatory Caspases in the Orbito-Frontal Cortex of Neuropathic Mice. Eur. J. Pharmacol. 2009, 603, 42–49. [Google Scholar] [CrossRef]
- Lu, L.; Pan, C.; Chen, L.; Hu, L.; Wang, C.; Han, Y.; Yang, Y.; Cheng, Z.; Liu, W.-T. AMPK Activation by Peri-Sciatic Nerve Administration of Ozone Attenuates CCI-Induced Neuropathic Pain in Rats. J. Mol. Cell Biol. 2017, 9, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.T.; Zong, L.J.; Jia, R.M.; Qin, X.M.; Ruan, S.R.; Lu, L.L.; Wang, P.; Hu, L.; Liu, W.T.; Yang, Y.; et al. Ozone Attenuates Chemotherapy-Induced Peripheral Neuropathy via Upregulating the AMPK-SOCS3 Axis. J. Cancer Res. Ther. 2023, 19, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Liu, C.; Chen, D.; Xu, C.; Qi, X.; Zhang, A.; Zhu, X.; Liu, Y.; Wang, L.; Hao, L.; et al. Ozone Alleviates MSU-Induced Acute Gout Pain via Upregulating AMPK/GAS6/MerTK/SOCS3 Signaling Pathway. J. Transl. Med. 2023, 21, 890. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, C.; Wang, K.; Chen, M.; Wang, Y.; Chen, Z.; Zhao, W.; Ou, S. Elucidating the Molecular Mechanisms of Ozone Therapy for Neuropathic Pain Management by Integrated Transcriptomic and Metabolomic Approach. Front. Genet. 2023, 14, 1231682. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Lim, Y.; Belmonte, G.; Miracco, C.; Zanardi, I.; Bocci, V.; Travagli, V. Ozonated Sesame Oil Enhances Cutaneous Wound Healing in SKH1 Mice. Wound Repair Regen. 2011, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, E.; Akdur, A.; Ayvazoğlu Soy, E.; Araz, C.; Ok Atilgan, A.; Özturan Özer, E.; Şençelikel, T.; Haberal, M. Effect of Subcutaneous Topical Ozone Therapy on Second-Degree Burn Wounds in Rats: An Experimental Study. J. Burn Care Res. 2021, 42, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, H.; Toker, H.; Balcı, H.; Ozer, H. Effect of Ozone Therapy on Autogenous Bone Graft Healing in Calvarial Defects: A Histologic and Histometric Study in Rats. J. Periodontal Res. 2013, 48, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Alpan, A.L.; Toker, H.; Ozer, H. Ozone Therapy Enhances Osseous Healing in Rats With Diabetes With Calvarial Defects: A Morphometric and Immunohistochemical Study. J. Periodontol. 2016, 87, 982–989. [Google Scholar] [CrossRef]
- Ozbay, I.; Ital, I.; Kucur, C.; Akcılar, R.; Deger, A.; Aktas, S.; Oghan, F. Effects of Ozone Therapy on Facial Nerve Regeneration. Braz. J. Otorhinolaryngol. 2017, 83, 168–175. [Google Scholar] [CrossRef]
- Kızılay, Z.; Kahraman Çetin, N.; Aksel, M.; Abas, B.İ.; Aktaş, S.; Erken, H.A.; Topçu, A.; Yılmaz, A.; Yenisey, C. Ozone Partially Decreases Axonal and Myelin Damage in an Experimental Sciatic Nerve Injury Model. J. Investig. Surg. 2019, 32, 8–17. [Google Scholar] [CrossRef]
- Yuca, Y.; Yucesoy, T.; Tok, O.E.; Alkan, A. The Efficiency of Ozone Therapy and Low-Level Laser Therapy in Rat Facial Nerve Injury. J. Craniomaxillofac. Surg. 2020, 48, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.Á.; Elias, S.T.; da Silva, S.M.M.; Magalhães, P.O.; Macedo, S.B.; Ribeiro, A.P.D.; Guerra, E.N.S. In Vitro Evaluation of Wound Healing and Antimicrobial Potential of Ozone Therapy. J. Craniomaxillofac. Surg. 2017, 45, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Tang, H.; Wu, M.; Liao, Y.; Li, K.; Li, L.; Xu, X. Ozone Oil Promotes Wound Healing by Increasing the Migration of Fibroblasts via PI3K/Akt/mTOR Signaling Pathway. Biosci. Rep. 2017, 37, BSR20170658. [Google Scholar] [CrossRef]
- Cisterna, B.; Costanzo, M.; Lacavalla, M.A.; Galiè, M.; Angelini, O.; Tabaracci, G.; Malatesta, M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int. J. Mol. Sci. 2021, 22, 10133. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, A.; Verga Falzacappa, C.V.; Martinelli, M.; Misiti, S.; Brunetti, E.; Bucci, B. O(2/3) Exposure Inhibits Cell Progression Affecting Cyclin B1/Cdk1 Activity in SK-N-SH While Induces Apoptosis in SK-N-DZ Neuroblastoma Cells. J. Cell Physiol. 2007, 213, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, T.; Tang, S.; Zhong, M.; Huang, Q.; Li, X.; He, X. Medical Ozone Induces Proliferation and Migration Inhibition through ROS Accumulation and PI3K/AKT/NF-κB Suppression in Human Liver Cancer Cells in Vitro. Clin. Transl. Oncol. 2021, 23, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xu, B.; Li, J.; Zhong, M.; Hong, Z.; Zhao, W.; Zeng, T.; He, X. Ozone Induces BEL7402 Cell Apoptosis by Increasing Reactive Oxygen Species Production and Activating JNK. Ann. Transl. Med. 2021, 9, 1257. [Google Scholar] [CrossRef]
- Tang, S.; Xu, B.; Pang, H.; Xiao, L.; Mei, Q.; He, X. Ozonated Water Inhibits Hepatocellular Carcinoma Invasion and Metastasis by Regulating the HMGB1/NF-κB/STAT3 Signaling Pathway. J. Hepatocellular Carcinoma 2023, 10, 203–215. [Google Scholar] [CrossRef]
- Mrozek-Szetela, A.; Rejda, P.; Wińska, K. A Review of Hygienization Methods of Herbal Raw Materials. Appl. Sci. 2020, 10, 8268. [Google Scholar] [CrossRef]
- Valacchi, G.; Fortino, V.; Bocci, V. The Dual Action of Ozone on the Skin. Br. J. Dermatol. 2005, 153, 1096–1100. [Google Scholar] [CrossRef]
- Fenaroli, P. Gravimetric Estimation of Ozone; Ozone Numbers of Oils. Gazz. Chim. Ital. 1906, 36, 292–298. [Google Scholar]
- De Almeida, N.R.; Beatriz, A.; Micheletti, A.C.; de Arruda, E.J. Ozonized Vegetable Oils and Therapeutic Properties: A review. Electron. J. Chem. 2012, 4, 313–326. [Google Scholar] [CrossRef]
- Zanardi, I.; Travagli, V.; Gabbrielli, A.; Chiasserini, L.; Bocci, V. Physico-Chemical Characterization of Sesame Oil Derivatives. Lipids 2008, 43, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ugazio, E.; Tullio, V.; Binello, A.; Tagliapietra, S.; Dosio, F. Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules 2020, 25, 334. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Zanardi, I.; Sticozzi, C.; Bocci, V.; Travagli, V. Emerging Topics in Cutaneous Wound Repair. Ann. N. Y. Acad. Sci. 2012, 1259, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Lee, H.; Woodby, B.; Valacchi, G. Ozonated Oils and Cutaneous Wound Healing. Curr. Pharm. Des. 2019, 25, 2264–2278. [Google Scholar] [CrossRef]
- Pérez-Santonja, J.J.; Güell, J.L.; Gris, O.; Vázquez Dorrego, X.M.; Pellicer, E.; Benítez-Del-Castillo, J.M. Liposomal Ozonated Oil in Ocular Infections: A Review of Preclinical and Clinical Studies, Focusing on Its Antiseptic and Regenerative Properties. Clin. Ophthalmol. 2022, 16, 1953–1962. [Google Scholar] [CrossRef]
- Anzolin, A.P.; da Silveira-Kaross, N.L.; Bertol, C.D. Ozonated Oil in Wound Healing: What Has Already Been Proven? Med. Gas. Res. 2020, 10, 54–59. [Google Scholar] [CrossRef]
- Deepthi, R.; Bilichodmath, S. Ozone Therapy in Periodontics: A Meta-Analysis. Contemp. Clin. Dent. 2020, 11, 108–115. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, L.; Gao, L.; Zeng, J.; Lu, J. Ozone Therapy for Skin Diseases: Cellular and Molecular Mechanisms. Int. Wound J. 2023, 20, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Dua, J.S.; Rana, A.C.; Bhandari, A.K. Liposome: Methods of Preparation and Applications. Int. J. Pharmceut. Stud. Res. 2012, 3, 14–20. [Google Scholar]
- Heidari Kaydan, H.; Sharif Makhmlzadeh, B.; Feghhi, M.; Rezaei, A.; Bagheri, F.; Salimi, A. Preparation and Characterization of Ozonated Liposomes Loaded with Curcumin: A Potential Approach for Diabetic Retinopathy Treatment. Jundishapur J. Nat. Pharm. Prod. 2024, 19, e153745. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as Nanomedical Devices. Int. J. Nanomedicine 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Zylberberg, C.; Matosevic, S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Celenza, G.; Iorio, R.; Cracchiolo, S.; Petricca, S.; Costagliola, C.; Cinque, B.; Segatore, B.; Amicosante, G.; Bellio, P. Antimycotic Activity of Ozonized Oil in Liposome Eye Drops against Candida spp. Transl. Vis. Sci. Technol. 2020, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Urbanik-Sypniewska, T.; Kutkowska, J.; Chorągiewicz, T.; Matysik-Woźniak, A.; Zweifel, S.; Czarnek-Chudzik, A.; Załuska, W.; Rejdak, R.; Toro, M.D. Ozone-Based Eye Drops Activity on Ocular Epithelial Cells and Potential Pathogens Infecting the Front of the Eye. Antioxidants 2021, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Cavallo, R.; Zanotto, E.; Cipriani, R.; Panico, C.; Protti, R.; Scapagnini, G.; Davinelli, S.; Costagliola, C. In Vitro Antimicrobial Activity of Ozonated Oil in Liposome Eyedrop against Multidrug-Resistant Bacteria. Open Med. 2022, 17, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Zerillo, L.; Polvere, I.; Varricchio, R.; Madera, J.R.; D’Andrea, S.; Voccola, S.; Franchini, I.; Stilo, R.; Vito, P.; Zotti, T. Antibiofilm and Repair Activity of Ozonated Oil in Liposome. Microb. Biotechnol. 2022, 15, 1422–1433. [Google Scholar] [CrossRef] [PubMed]
- Gentili, V.; Strazzabosco, G.; Salgari, N.; Mancini, A.; Rizzo, S.; Beltrami, S.; Schiuma, G.; Casciano, F.; Alogna, A.; Passarella, D.; et al. Ozonated Oil in Liposome Eyedrops Reduces the Formation of Biofilm, Selection of Antibiotic-Resistant Bacteria, and Adhesion of Bacteria to Human Corneal Cells. Int. J. Mol. Sci. 2023, 24, 14078. [Google Scholar] [CrossRef]
- Sánchez-González, M.C.; Gallardo-Real, I.; Gutiérrez-Sánchez, E.; De-Hita-Cantalejo, C.; Capote-Puente, R.; Sánchez-González, J.-M. Diversity and Composition of Ocular Microbiota in Contact Lens Wearers: Efficacy of Liposomal Ozonated Oil. Cont. Lens Anterior Eye 2025, 48, 102368. [Google Scholar] [CrossRef]
- Rizzo, S.; Savastano, M.C.; Bortolotti, D.; Savastano, A.; Gambini, G.; Caccuri, F.; Gentili, V.; Rizzo, R. COVID-19 Ocular Prophylaxis: The Potential Role of Ozonated-Oils in Liposome Eyedrop Gel. Transl. Vis. Sci. Technol. 2021, 10, 7. [Google Scholar] [CrossRef]
- Spadea, L.; Tonti, E.; Spaterna, A.; Marchegiani, A. Use of Ozone-Based Eye Drops: A Series of Cases in Veterinary and Human Spontaneous Ocular Pathologies. Case Rep. Ophthalmol. 2018, 9, 287–298. [Google Scholar] [CrossRef]
- Passidomo, F.; Pignatelli, F.; Addabbo, G.; Costagliola, C. Topical Liposomal Ozonated Oil in Complicated Corneal Disease: A Report on Three Clinical Cases. Int. Med. Case Rep. J. 2021, 14, 327–332. [Google Scholar] [CrossRef]
- Benítez-Del-Castillo, J.M. Liposomal Ozonated Oil Effectiveness in the Signs and Symptoms of Blepharitis in Usual Clinical Practice. Eur. J. Ophthalmol. 2024, 34, 678–682. [Google Scholar] [CrossRef]
- Marchegiani, A.; Magagnini, M.; Cerquetella, M.; Troiano, P.; Franchini, I.; Franchini, A.; Scapagnini, G.; Spaterna, A. Preoperative Topical Liposomal Ozone Dispersion to Reduce Bacterial Colonization in Conjunctival Sac and Periocular Skin: Preliminary Study in Dogs. Exp. Eye Res 2019, 189, 107848. [Google Scholar] [CrossRef] [PubMed]
- Spadea, L.; Zanotto, E.; Cavallo, R.; Campagna, G.; Giannico, M.I.; Costagliola, C. ELOOM Study Investigators Effectiveness of Liposomal Ozonized Oil in Reducing Ocular Microbial Flora in Patients Undergoing Cataract Surgery. J. Cataract Refract. Surg. 2021, 47, 1548–1555. [Google Scholar] [CrossRef]
- Grassi, M.O.; Boscia, G.; Alessio, G.; Zerbinati, M.; Petrara, G.; Puzo, P.; Giancipoli, E.; Giuseppe, C.; Boscia, F.; Viggiano, P. Liposomal Ozonated Oil Ensures a Further Reduction in the Microbial Load Before Intravitreal Injection: The “OPERA” Study. Ophthalmol. Ther. 2024, 13, 2771–2788. [Google Scholar] [CrossRef]
- Cagini, C.; Mariniello, M.; Messina, M.; Muzi, A.; Balducci, C.; Moretti, A.; Levorato, L.; Mencacci, A. The Role of Ozonized Oil and a Combination of Tobramycin/Dexamethasone Eye Drops in the Treatment of Viral Conjunctivitis: A Randomized Clinical Trial. Int. Ophthalmol. 2020, 40, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, C.; Giancipoli, E. Anterior Acute Uveitis Report in a SARS-CoV-2 Patient Managed with Adjunctive Topical Antiseptic Prophylaxis Preventing 2019-nCoV Spread Through the Ocular Surface Route. Int. Med. Case Rep. J. 2020, 13, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzi, M.; Maestri, A.; Campagnoli, M.F.; Coscia, A.; Reibaldi, M. Safety and Tolerability of Ozonated-Oils in Liposome Eyedrop in Preterm Eye Examination. Minerva Pediatr. 2022, 74, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Li, Y.; Song, L.; Xu, T.; Jiang, X.; Yin, X.; He, Y.; Xu, J.; Ma, X.; Chai, L.; et al. Improvement of Radiotherapy with an Ozone-Carried Liposome Nano-System for Synergizing Cancer Immune Checkpoint Blockade. Nano Today 2022, 47, 101675. [Google Scholar] [CrossRef]
- Chen, M.; Song, L.; Zhou, Y.; Xu, T.; Sun, T.; Liu, Z.; Xu, Z.; Zhao, Y.; Du, P.; Ma, Y.; et al. Promotion of Triple Negative Breast Cancer Immunotherapy by Combining Bioactive Radicals with Immune Checkpoint Blockade. Acta Biomater. 2025, 194, 305–322. [Google Scholar] [CrossRef]
- Tığlı Aydın, R.S.; Kazancı, F. Synthesis and Characterization of Ozonated Oil Nanoemulsions. J. Am. Oil Chem. Soc. 2018, 95, 1385–1398. [Google Scholar] [CrossRef]
- Yalçın, Y.; Tekin, İ.Ö.; Tığlı Aydın, R.S. Ionizing Radiation Induced DNA Damage via ROS Production in Nano Ozonized Oil Treated B-16 Melanoma and OV-90 Ovarian Cells. Biochem. Biophys. Res. Commun. 2022, 615, 143–149. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Chen, C.-W.; Tseng, Y.-S.; Kuo, C.-H.; Wu, C.-H.; Dong, C.D. Advances in Micro- and Nano Bubbles Technology for Application in Biochemical Processes. Environ. Technol. Innov. 2021, 23, 101729. [Google Scholar] [CrossRef]
- Chaurasia, G. Nanobubbles: An Emerging Science in Nanotechnology. MGM J. Med. Sci. 2023, 10, 327. [Google Scholar] [CrossRef]
- Hansen, H.H.W.B.; Cha, H.; Ouyang, L.; Zhang, J.; Jin, B.; Stratton, H.; Nguyen, N.-T.; An, H. Nanobubble Technologies: Applications in Therapy from Molecular to Cellular Level. Biotechnol. Adv. 2023, 63, 108091. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Ishikawa, T.; Terada, H.; Nashimoto, M. Microbicidal Effects of Stored Aqueous Ozone Solution Generated by Nano-Bubble Technology. In Vivo 2017, 31, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Hayakumo, S.; Arakawa, S.; Mano, Y.; Izumi, Y. Clinical and Microbiological Effects of Ozone Nano-Bubble Water Irrigation as an Adjunct to Mechanical Subgingival Debridement in Periodontitis Patients in a Randomized Controlled Trial. Clin. Oral Investig. 2013, 17, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Hayakumo, S.; Arakawa, S.; Takahashi, M.; Kondo, K.; Mano, Y.; Izumi, Y. Effects of Ozone Nano-Bubble Water on Periodontopathic Bacteria and Oral Cells—In Vitro Studies. Sci. Technol. Adv. Mater. 2014, 15, 055003. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, F.; Domon, H.; Hiyoshi, T.; Tamura, H.; Shimizu, K.; Maekawa, T.; Tabeta, K.; Ushida, A.; Terao, Y. Ozone Ultrafine Bubble Water Exhibits Bactericidal Activity against Pathogenic Bacteria in the Oral Cavity and Upper Airway and Disinfects Contaminated Healthcare Equipment. PLoS ONE 2023, 18, e0284115. [Google Scholar] [CrossRef]
- Sanno, M.; Kusumoto, J.; Terashi, H.; Sakakibara, S. Nanobubbles and Fibroblast Growth: An In Vitro Study on Cell Migration and Proliferation. Cureus 2024, 16, e74775. [Google Scholar] [CrossRef]
- Takahashi, M.; Nakazawa, M.; Nishimoto, T.; Odajima, M.; Shirai, Y.; Sugawa, S. Impact of Bulk Nanobubble Water on a TiO2 Solid Surface: A Case Study for Medical Implants. Langmuir 2024, 40, 25950–25956. [Google Scholar] [CrossRef]
- Hayashi, K.; Onda, T.; Honda, H.; Ozawa, N.; Ohata, H.; Takano, N.; Shibahara, T. Effects of Ozone Nano-Bubble Water on Mucositis Induced by Cancer Chemotherapy. Biochem. Biophys. Rep. 2019, 20, 100697. [Google Scholar] [CrossRef]
- Horiuchi, Y. Palmoplantar Pustulosis Treated with Oral Rinse Using Ozone Nanobubble Water: A Case Series. Dermatol. Ther. 2020, 33, e13924. [Google Scholar] [CrossRef]
- Horiuchi, Y. Pigmented Purpuric Dermatosis Persistent over 20 Years Treated with an Ozone Nanobubble Water Oral Rinse: A Case Study. Dermatol. Ther. 2022, 35, e15854. [Google Scholar] [CrossRef]
- Horiuchi, Y. A Case of Gougerot-Blum Disease Treated with an Ozone Nanobubble Water Oral Rinse. Int. J. Dermatol. 2024, 63, e18–e19. [Google Scholar] [CrossRef] [PubMed]
- Alkan, P.; Gunes, M.; Ozakin, C.; Sabanci, A. New Antibacterial Agent: Nanobubble Ozone Stored in Liposomes: The Antibacterial Activity of Nanobubble Ozone in Liposomes and Their Thymol Solutions. Ozone Sci. Eng. 2021, 43, 637–641. [Google Scholar] [CrossRef]
- Sabancı, A.U.; Erkan Alkan, P.; Mujde, C.; Polat, H.U.; Ornek Erguzeloglu, C.; Bisgin, A.; Ozakin, C.; Temel, S.G. Nanobubble Ozone Stored in Hyaluronic Acid Decorated Liposomes: Antibacterial, Anti-SARS-CoV-2 Effect and Biocompatibility Tests. Int. J. Nanomedicine 2022, 17, 351–379. [Google Scholar] [CrossRef]
- Erkan Alkan, P.; Karabiyik, T. Nanobubble Ozone Stored in Hyaluronic Acid-Decorated Liposome Solutions: Inactivating Antibiotic-Resistant Bacteria and Genotoxicity, Sub-Acute and Sub-Chronic Toxicity Tests. Infect. Drug Resist. 2025, 18, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Toker, M.B.; Sabancı, A.Ü.; Avcı, G.; Aktar, A.; Denk, B.; Bari, Ö.; Özalp, G.R. Evaluation of Cryopreserved Ram Sperm with Nano-Ozone Solution and Post-Thaw Life Span by Flow Cytometric Analysis. Biopreserv. Biobank. 2024, 22, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Bari, Ö.; Sabancı, A.Ü.; Avci, G.; Bozkurt, B.; Üstüner, B.; Denk, B.; Özalp, G.R. Canine Oocyte Nuclear Maturation with Nano-Ozone (NZS) Supplementation: The Alterations of Antioxidant, and Oxidant Status and CDK1, Cyclin B1 Expressions. Reprod. Biol. 2024, 24, 100929. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Han, C.; Chen, X.; Li, L.; Chen, X.; Zhang, W.; Wang, J.; Han, F.; Yan, L.; Shi, X. Self-Healing Adhesive Hydrogels for Sustained Ozone Release: Enhanced Antibacterial Properties and Improved Wound Healing. J. Control Release 2025, 377, 212–222. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Stankiewicz, K.; Bulanda, K.; Czernecka, N.; Heliasz, M.; Hunter, W.; Ratajewicz, A.; Khachatryan, K.; Khachatryan, G. In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals. Int. J. Mol. Sci. 2024, 25, 3557. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, G.; Khachatryan, L.; Krystyjan, M.; Lenart-Boroń, A.; Krzan, M.; Kulik, K.; Białecka, A.; Grabacka, M.; Nowak, N.; Khachatryan, K. Preparation of Nano/Microcapsules of Ozonated Olive Oil in Hyaluronan Matrix and Analysis of Physicochemical and Microbiological (Biological) Properties of the Obtained Biocomposite. Int. J. Mol. Sci. 2022, 23, 14005. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, J.; Lin, Y.; He, W.; Hou, J.; Deng, M.; Chen, Y.; Liu, Q.; Lu, A.; Cui, Z.; et al. Injectable Ozone-Rich Nanocomposite Hydrogel Loaded with D-Mannose for Anti-Inflammatory and Cartilage Protection in Osteoarthritis Treatment. Small 2024, 20, e2309597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Wu, B.; Li, C.; Lin, J.; Huang, P. Thermoresponsive Ozone-Enriched Spray Gel for Postsurgical Treatment of Hepatocellular Carcinoma. ACS Nano 2023, 17, 3518–3527. [Google Scholar] [CrossRef]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef]
- Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A Future of Targeted Drug Delivery Systems. J. Adv. Pharm. Technol. Res. 2010, 1, 374–380. [Google Scholar] [CrossRef]
- Durga Bhavani, G.; Veera Lakshmi, P. Recent Advances of Non-Ionic Surfactant-Based Nano-Vesicles (Niosomes and Proniosomes): A Brief Review of These in Enhancing Transdermal Delivery of Drug. Future J. Pharm. Sci. 2020, 6, 100. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Ramzy, A.; Sawy, A.M.; Nabil, M.; Gad, M.Z.; El-Shazly, M.; Aboul-Soud, M.A.M.; Azzazy, H.M.E.-S. Ozonated Olive Oil: Enhanced Cutaneous Delivery via Niosomal Nanovesicles for Melanoma Treatment. Antioxidants 2022, 11, 1318. [Google Scholar] [CrossRef]
- Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications. Drug Target Insights 2007, 2, 147–157. [Google Scholar] [CrossRef]
- Raffin Pohlmann, A.; Weiss, V.; Mertins, O.; Pesce da Silveira, N.; Stanisçuaski Guterres, S. Spray-Dried Indomethacin-Loaded Polyester Nanocapsules and Nanospheres: Development, Stability Evaluation and Nanostructure Models. Eur. J. Pharm. Sci. 2002, 16, 305–312. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.L.; Zilles, J.C.; Machado, A.U.; Marques, M.S.; da Costa, B.S.; Kulkamp Guerreiro, I.C.; Fuentefria, A.M.; Contri, R.V. Polymeric Nanocapsules Containing Ozonated Oil and Terbinafine Hydrochloride as a Potential Treatment Against Dermatophytes. AAPS PharmSciTech 2023, 24, 198. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zheng, D.; Xu, J.; Xu, T.; Liu, Z.; Zhang, H.; Li, Y.; Peng, Y.; Shi, H. Improvement of TNBC Immune Checkpoint Blockade with a Microwave-Controlled Ozone Release Nanosystem. J. Control Release 2022, 351, 954–969. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malatesta, M.; Carton, F. Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy. Nanomaterials 2025, 15, 1188. https://doi.org/10.3390/nano15151188
Malatesta M, Carton F. Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy. Nanomaterials. 2025; 15(15):1188. https://doi.org/10.3390/nano15151188
Chicago/Turabian StyleMalatesta, Manuela, and Flavia Carton. 2025. "Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy" Nanomaterials 15, no. 15: 1188. https://doi.org/10.3390/nano15151188
APA StyleMalatesta, M., & Carton, F. (2025). Nanocarriers for Medical Ozone Delivery: A New Therapeutic Strategy. Nanomaterials, 15(15), 1188. https://doi.org/10.3390/nano15151188