The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Method
2.3. Experimental Materials
3. Results
3.1. Surface Morphology
3.2. Ablation Threshold
3.3. Graphitization Threshold
4. Conclusions
- (1)
- The single-pulse ablation pit is elliptical, and its shape is influenced by the angle between the femtosecond laser’s electric field vibration and the lattice orientation. When the angle is 45 degrees from the <110> orientation, the ablation pit resembles a standard circle more closely.
- (2)
- There are differences in ablation thresholds for different orientations, with the threshold for <110> orientation (9.55 J/cm2) slightly lower than that for <100> orientation (10.32 J/cm2).
- (3)
- Graphitization thresholds follow the same orientation trend as ablation thresholds, with <110> orientation (3.31 J/cm2) demonstrating a 30% reduction compared to <100> orientation (4.79 J/cm2). Furthermore, the graphitization order parameter IG/ID (0.52) for <110> is significantly higher than that for <100> (0.21), indicating that <110> orientation exhibits a stronger graphitization tendency and order. Moreover, amorphous carbon and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crawford, K.G.; Maini, I.; Macdonald, D.A.; Moran, D.A.J. Surface transfer doping of diamond: A review. Prog. Surf. Sci. 2021, 96, 100613. [Google Scholar] [CrossRef]
- Zhang, T.; Pramanik, G.; Zhang, K.; Gulka, M.; Wang, L.; Jing, J.; Xu, F.; Li, Z.; Wei, Q.; Cigler, P.; et al. Toward quantitative bio-sensing with nitrogen–vacancy center in diamond. ACS Sens. 2021, 6, 2077–2107. [Google Scholar] [CrossRef]
- Kempkes, M.; Zier, T.; Singer, K.; Garcia, M.E. Ultrafast nonthermal NV center formation in diamond. Carbon 2021, 174, 524–530. [Google Scholar] [CrossRef]
- Hu, X.; Ge, L.; Liu, Z.; Li, M.; Wang, Y.; Han, S.; Peng, Y.; Xu, M.; Hu, X.; Tang, G.; et al. Diamond-SiC composite substrates: A novel strategy as efficient heat sinks for GaN-based devices. Carbon 2024, 218, 118755. [Google Scholar] [CrossRef]
- Chernykh, M.Y.; Andreev, A.A.; Ezubchenko, I.S.; Chernykh, I.A.; Mayboroda, I.O.; Kolobkova, E.M.; Khrapovitskaya, Y.V.; Grishchenko, J.V.; Perminov, P.A.; Sedov, V.S.; et al. GaN-based heterostructures with CVD diamond heat sinks: A new fabrication approach towards efficient electronic devices. Appl. Mater. Today 2022, 26, 101338. [Google Scholar] [CrossRef]
- Jia, L.; Zhu, S.; Zhang, N.; Lin, Z.; Cai, W.; Cheng, L.; Lu, X.; Zheng, W. Ultrafast diamond photodiodes for vacuum ultraviolet imaging in space-based applications. Adv. Opt. Mater. 2025, 13, 2402601. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Wang, T.; Tang, Y. Ultrathin diamond nanofilms—Development, challenges, and applications. Small 2021, 17, 2007529. [Google Scholar] [CrossRef]
- Juri, A.Z.; Zhang, Y.; Kotousov, A.; Yin, L. Zirconia responses to edge chipping damage induced in conventional and ultrasonic vibration-assisted diamond machining. J. Mater. Res. Technol. 2021, 13, 573–589. [Google Scholar] [CrossRef]
- Yip, W.S.; To, S.; Sun, Z. Hybrid ultrasonic vibration and magnetic field assisted diamond cutting of titanium alloys. J. Manuf. Process. 2021, 62, 743–752. [Google Scholar] [CrossRef]
- Xiao, C.; Hsia, F.; SuttonCook, A.; Weber, B.; Franklin, S. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: A review of mechanisms and processes. Carbon 2022, 196, 29–48. [Google Scholar] [CrossRef]
- Li, G.; Xiao, C.; Zhang, S.; Sun, R.; Wu, Y. An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing. J. Mater. Process. Technol. 2022, 301, 117453. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Cui, E.-N.; Yu, L.; Wang, Z. Research and application progress of laser-processing technology in diamond micro-fabrication. Micromachines 2024, 15, 547. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L.; Lin, W.; Hong, M. Optical quality laser polishing of CVD diamond by UV pulsed laser irradiation. Adv. Opt. Mater. 2021, 9, 2100537. [Google Scholar] [CrossRef]
- Ke, J.; Chen, X.; Liu, C.; Zhang, J.; Yang, H.; Xu, J. Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting. Int. J. Adv. Manuf. Technol. 2022, 118, 3265–3282. [Google Scholar] [CrossRef]
- Khomich, A.A.; Kononenko, V.; Kudryavtsev, O.; Zavedeev, E.; Khomich, A.V. Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face. Nanomaterials 2023, 13, 162. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Q.; Jia, R.; Chen, L.; Liu, B. Surface texturing on polycrystalline diamond compact cutter by nanosecond laser processing. Adv. Eng. Mater. 2025, 27, 2402204. [Google Scholar] [CrossRef]
- Golota, N.C.; Preiss, D.; Fredin, Z.P.; Patil, P.; Banks, D.P.; Bahri, S.; Griffin, R.G.; Gershenfeld, N. High aspect ratio diamond nanosecond laser machining. Appl. Phys. A 2023, 129, 490. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, J.; Wang, G.; Yang, K.; Zhang, W. Controllable Preparation of Fused Silica Micro Lens Array through Femtosecond Laser Penetration-Induced Modification Assisted Wet Etching. Materials 2024, 17, 4231. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Cheng, K.; Yang, Y.; Zhang, W. Nano hierarchical hill-like structure with TA1 surface manufactured by LIPSS for anti-corrosion and anti-icing. J. Mater. Res. Technol. 2025, 35, 3655–3667. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhu, Z.; Zhang, W. Study on the Superhydrophobic Properties of Micro/Nano Hole Structure on the Surface of Glass Fiber Reinforced Plastics Based on Femtosecond Laser Etching. Nanomaterials 2025, 15, 287. [Google Scholar] [CrossRef]
- Ali, B.; Litvinyuk, I.V.; Rybachuk, M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges. Carbon 2021, 179, 209–226. [Google Scholar] [CrossRef]
- Kononenko, V.V. Modification of diamond surface by femtosecond laser pulses. Photonics 2023, 10, 1077. [Google Scholar] [CrossRef]
- Nolasco, L.K.; Couto, F.A.; Andrade, M.B.; Mendonça, C.R. Femtosecond laser micromachining study with multiple wavelengths in CVD diamond. Diam. Relat. Mater. 2023, 131, 109589. [Google Scholar] [CrossRef]
- Mastellone, M.; Bellucci, A.; Girolami, M.; Serpente, V.; Polini, R.; Orlando, S.; Santagata, A.; Sani, E.; Hitzel, F.; Trucchi, D.M. Deep-subwavelength 2D periodic surface nanostructures on diamond by double-pulse femtosecond laser irradiation. Nano Lett. 2021, 21, 4477–4483. [Google Scholar] [CrossRef]
- Han, H.; Liu, H.; Huang, J.; Qiu, P.; Li, J.; Zhang, B.; Xu, S. Atomic-level insight into sequential evolution of nanocomposite carbon structures in femtosecond laser processing of diamond. Int. J. Mach. Tools Manuf. 2025, 200, 104247. [Google Scholar] [CrossRef]
- Girolami, M.; Bellucci, A.; Mastellone, M.; Orlando, S.; Serpente, V.; Valentini, V.; Polini, R.; Sani, E.; De Caro, T.; Trucchi, D.M. Femtosecond-laser nanostructuring of black diamond films under different gas environments. Materials 2020, 13, 5761. [Google Scholar] [CrossRef]
- Salter, P.S.; Villar, M.P.; Lloret, F.; Reyes, D.F.; Krueger, M.; Henderson, C.S.; Araujo, D.; Jackman, R.B. Laser engineering nanocarbon phases within diamond for science and electronics. ACS Nano 2024, 18, 2861–2871. [Google Scholar] [CrossRef]
- Odake, S.; Ohfuji, H.; Okuchi, T.; Kagi, H.; Sumiya, H.; Irifune, T. Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond. Diam. Relat. Mater. 2009, 18, 877–880. [Google Scholar] [CrossRef]
- Takayama, N.; Yan, J. Laser irradiation responses of a single-crystal diamond produced by different crystal growth methods. Appl. Sci. 2017, 7, 815. [Google Scholar] [CrossRef]
- Berhane, A.M.; Baldwin, C.G.; Liang, K.; Moshkani, M.; Lustri, C.; Downes, J.E.; Stampfl, C.; Mildren, R.P. Morphogenesis of mesoscopic surface patterns formed in polarized two-photon etching of diamond. Carbon 2020, 173, 271–285. [Google Scholar] [CrossRef]
- Han, H.; He, M.; Liu, H.; Zhang, B.; Zhou, C. Damage evolution and crystalline orientation effects in ultrafast laser micro/nano processing of single-crystal diamond. Opt. Laser Technol. 2024, 169, 110120. [Google Scholar] [CrossRef]
- Choi, H.W.; Bong, S.; Farson, D.F.; Lu, C.M.; Lee, L.J. Femtosecond laser micromachining and application of hot embossing molds for microfluid device fabrication. J. Laser Appl. 2009, 21, 196–204. [Google Scholar] [CrossRef]
- Hossain, A.M.; Ehrhardt, M.; Rudolph, M.; Lorenz, P.; Kalanov, D.; Zimmer, K.; Anders, A. Time-and position-dependent breakdown volume calculations to explain experimentally observed femtosecond laser-induced plasma properties. ACS Photonics 2023, 10, 1232–1239. [Google Scholar] [CrossRef]
- Rehman, U.; Nguyen, V.H.; Janulewicz, K.A. Ultrafast expansion kinetics of femtosecond laser-induced optical breakdown in bulk fused silica. J. Phys. D Appl. Phys. 2025, 58, 025102. [Google Scholar] [CrossRef]
- McDaniel, C.; Flanagan, A.; O’Connor, G.M. Evidence for increased incubation parameter in multi-pulse ablation of a Pt:SS alloy using a femtosecond laser at high repetition rates. Appl. Surf. Sci. 2014, 295, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Huang, J.; Li, J.; Cao, L.; Kajiyoshi, K. Two CS bonds derived from carbons with different IG/ID values promote high sulfur loads and stable capacity storage. Appl. Surf. Sci. 2022, 584, 152620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, J.; Cheng, K.; Yang, K.; Xu, B.; Wang, W.; Zhang, W. The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond. Nanomaterials 2025, 15, 1160. https://doi.org/10.3390/nano15151160
Wang G, Wang J, Cheng K, Yang K, Xu B, Wang W, Zhang W. The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond. Nanomaterials. 2025; 15(15):1160. https://doi.org/10.3390/nano15151160
Chicago/Turabian StyleWang, Guolong, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang, and Wenwu Zhang. 2025. "The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond" Nanomaterials 15, no. 15: 1160. https://doi.org/10.3390/nano15151160
APA StyleWang, G., Wang, J., Cheng, K., Yang, K., Xu, B., Wang, W., & Zhang, W. (2025). The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond. Nanomaterials, 15(15), 1160. https://doi.org/10.3390/nano15151160