An Ab Initio Metadynamics Study Reveals Multiple Mechanisms of Reactivity by a Primal Carbon Cluster Toward Hydrogen and Ammonia in Space
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydrogenation of C25
3.1.1. Dynamics
3.1.2. Metadynamics
3.2. Amination of C25
3.2.1. Dynamics
3.2.2. Metadynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOMD | Born–Oppenheimer Molecular Dynamics |
CSVR | Canonical Sampling through Velocity Rescaling |
CV | Collective Variable, Colvar |
DFT | Density Functional Theory |
DFTB | Density Functional Theory Tight Binding |
FE | Free Energy |
KS | Kohn–Sham |
MTD | Metadynamics |
PBC | Periodic Boundary Conditions |
RDF | Radial Distribution Function |
SCC | Self-Consistent Charges |
SCF | Self-Consistent Field |
TS | Transition State |
References
- Sun, S.; Cao, Y.; Sun, Z.; Tang, Z.; Zheng, L. Experimental Theoretical Studies on Carbon–Nitrogen Clusters C2nN7−. J. Phys. Chem. A 2006, 110, 8064–8072. [Google Scholar] [CrossRef]
- Belbruno, J.J.; Tang, Z.-C.; Smith, R.; Hobday, S. The structure and energetics of carbon-nitrogen clusters. Mol. Phys. 2001, 99, 957–967. [Google Scholar] [CrossRef]
- Zhang, H.; Ling, Y.; Peng, Y.; Zhang, J.; Guan, S. Nitrogen-doped porous carbon materials derived from ionic liquids as electrode for supercapacitor. Inorg. Chem. Commun. 2020, 115, 107856. [Google Scholar] [CrossRef]
- Lin, L.; Li, J.; Yuan, Q.; Li, Q.; Zhang, J.; Sun, L.; Rui, D.; Chen, Z.; Jia, K.; Wang, Y.; et al. Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Sci. Adv. 2019, 5, eaaw8337. [Google Scholar] [CrossRef] [PubMed]
- Guélin, M.; Cernicharo, J. Organic Molecules in Interstellar Space: Latest Advances. Front. Astron. Space Sci. 2022, 9, 787567. [Google Scholar] [CrossRef]
- McGuire, B.A. 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2018, 239, 17. [Google Scholar] [CrossRef]
- Swings, P.; Rosenfeld, L. Considerations Regarding Interstellar Molecules. Astrophys. J. 1937, 86, 483–486. [Google Scholar] [CrossRef]
- Dunham, T. Interstellar neutral potassium and neutral calcium. Publ. Astron. Soc. Pac. 1937, 49, 26. [Google Scholar] [CrossRef]
- McKellar, A. Evidence for the Molecular Origin of Some Hitherto Unidentified Interstellar Lines. Publ. Astron. Soc. Pac. 1940, 52, 187. [Google Scholar] [CrossRef]
- Adams, W. Some Results with the Coudé Spectrograph of the Mount Wilson Observatory. Astrophys. J. 1941, 93, 11. [Google Scholar] [CrossRef]
- Agúndez, M.; Cernicharo, J.; Guélin, M.; Kahane, C.; Roueff, E.; Kłos, J.; Aoiz, F.J.; Lique, F.; Marcelino, N.; Goicoechea, J.R.; et al. Astronomical identification of CN−, the smallest observed molecular anion. Astron. Astrophys. 2010, 517, 2. [Google Scholar] [CrossRef]
- Snyder, L.E.; Buhl, D. Observations of Radio Emission from Interstellar Hydrogen Cyanide. Astrophys. J. 1971, 163, 47. [Google Scholar] [CrossRef]
- Zuckerman, B.; Morris, M.; Palmer, P.; Turner, B.E. Observations of cs, HCN, U89.2, and U90.7 in NGC 2264. Astrophys. J. 1972, 173, 125. [Google Scholar] [CrossRef]
- Snyder, L.E.; Buhl, D. Detection of several new interstellar molecules. Ann. N. Y. Acad. Sci. 1972, 194, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.K.; Ziurys, L.M. Detection of CCN (X2Πr) in IRC+10216: Constrainind Carbon-Chain Chemistry. Astrophys. J. Lett. 2014, 795, 1. [Google Scholar] [CrossRef]
- Guelin, M.; Thaddeus, P. Tentative Detection of the C3NRadical Astrophys. J. Lett. 1977, 212, 81. [Google Scholar] [CrossRef]
- Friberg, P.; Hjalmarson, A.; Guelin, M.; Irvine, W.M. Interstellar C3N—Detection in Taurus dark clouds. Astrophys. J. 1980, 241, 99–103. [Google Scholar] [CrossRef]
- Ziurys, L.M.; Turner, B.E. HCNH(+)—A new interstellar molecular ion. Astrophys. J. 1986, 302, 31–36. [Google Scholar] [CrossRef]
- Agúndez, M.; Marcelino, N.; Cernicharo, J. Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space Astrophys. J. Lett. 2018, 861, 22. [Google Scholar] [CrossRef]
- Turner, B.E. Detection of Interstellar Cyanoacetylene. Astrophys. J. 1971, 163, 35. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Ohishi, M.; Ishikawa, S.-I.; Kaifu, N. Detection of isocyanoacetylene HCCNCin TMC-1 Astrophys. J. Lett. 1992, 386, 51–53. [Google Scholar] [CrossRef]
- McGuire, B.A.; Loomis, R.A.; Charness, C.M.; Corby, J.F.; Blake, G.A.; Hollis, J.M.; Lovas, F.J.; Jewell, P.R.; Remijan, A.J. Interstellar Carbodiimide (HNCNH): A New Astronomical Detection From The GBT PRIMOS Survey Via Maser Emission Features. Astrophys. J. Lett. 2012, 758, 33. [Google Scholar] [CrossRef]
- Solomon, P.M.; Jefferts, K.B.; Penzias, A.A.; Wilson, R.W. Detection of Millimeter Emission Lines from Interstellar Methyl Cyanide. Astrophys. J. 1971, 168, 107. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Kasai, Y.; Ishikawa, S.-I.; Ohishi, M.; Kaifu, N.; Amano, T. Detection of a new molecular ion HC3NH(+) in TMC-1. Astrophys. J. 1994, 420, 95–97. [Google Scholar] [CrossRef]
- Guelin, M.; Neininger, N.; Cernicharo, J. Astronomical detection of the cyanobutadiynyl radical, C.5.N. Astron. Astrophys. 1998, 335, 1–4. [Google Scholar] [CrossRef]
- Belloche, A.; Menten, K.M.; Comito, C.; Müller, H.S.P.; Schilke, P.; Ott, J.; Thorwirth, S.; Hieret, C. Detection of amino acetonitrile in Sgr B2(N). Astron. Astrophys. 2008, 492, 769–773. [Google Scholar] [CrossRef]
- Little, L.T.; Macdonald, G.H.; Riley, P.W.; Matheson, D.N. Observations of interstellar HC5N and HC7N in dark dust clouds. Mon. Not. R. Astron. Soc. 1978, 183, 45–50. [Google Scholar] [CrossRef]
- Kroto, H.W.; Kirby, C.; Walton, D.R.M.; Avery, L.W.; Broten, N.W.; MacLeod, J.M. The detection of cyanohexatriyne, H(C≡C)3CN, in Heile’s Cloud 2. Astrophys. J. Lett. 1978, 219, 133–137. [Google Scholar] [CrossRef]
- Kroto, H.W.; Kirby, C.; Walton, D.R.M.; Avery, L.W.; Broten, N.W.; MacLeod, J.M. Detection of a Complex New Interstellar Molecule with a Molecular Weight of 99. Bull. Am. Astron. Soc. 1977, 9, 303. [Google Scholar]
- Broten, N.W.; Oka, T.; Avery, L.W.; MacLeod, J.M.; Kroto, H.W. The detection of HC9N in interstellar space. Astrophys. J. 1978, 223, 105–107. [Google Scholar] [CrossRef]
- Cernicharo, J.; Heras, A.M.; Tielens, A.G.G.M.; Pardo, J.R.; Herpin, F.; Guélin, M.; Waters, L.B.F.M. Infrared Space Observatory’s Discovery of C4H2, C6H2, and Benzene in CRL 618. Astrophys. J. 2001, 546, 123–126. [Google Scholar] [CrossRef]
- McGuire, B.A.; Burkhardt, A.M.; Kalenskii, S.; Shingledecker, C.N.; Remijan, A.J.; Herbst, E.; McCarthy, M.C. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 2018, 359, 202–205. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agúndez, M.; Cabezas, C.; Tercero, B.; Marcelino, N.; Pardo, J.R.; De Vicente, P. Pure hydrocarbon cycles in TMC-1: Discovery of ethynyl cyclopropenylidene, cyclopentadiene and indene. Astron. Astrophys. 2021, 649, 15. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; Lee, K.L.K.; Loomis, R.A.; Burkhardt, A.M.; Shingledecker, C.N.; Charnley, S.B.; Cordiner, M.A.; Herbst, E.; Kalenskii, S.; Willis, E.R.; et al. Interstellar Detection of the Highly Polar Five-Membered Ring Cyanocyclopentadiene. Nat. Astron. 2012, 5, 176–180. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agundez, M.; Kaiser, R.I.; Cabezas, C.; Tercero, B.; Marcelino, N.; Pardo, J.R.; De Vicente, P. Discovery of two isomers of ethynyl cyclopentadiene in TMC-1: Abundances of CCH and CN derivatives of hydrocarbon cycles. Astron. Astrophys. 2021, 655, 1. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agundez, M.; Kaiser, R.I.; Cabezas, C.; Tercero, B.; Marcelino, N.; Pardo, J.R.; De Vicente, P. Discovery of benzyne, o-C6H4, in TMC-1 with the QUIJOTE line survey. Astron. Astrophys. 2021, 652, 9. [Google Scholar] [CrossRef]
- McGuire, B.A.; Loomis, R.A.; Burkhardt, A.M.; Lee, K.; Shingledecker, C.N.; Charnley, S.B.; Cooke, I.R.; Cordiner, M.; Herbst, E.; Kalenskii, S.V.; et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 2021, 371, 1265–1269. [Google Scholar] [CrossRef]
- Tau, O.; Lovergine, N.; Prete, P. Adsorption and decomposition steps on Cu(111) of liquid aromatic hydrocarbon precursors for low-temperature CVD of graphene: A DFT study. Carbon 2023, 206, 142–149. [Google Scholar] [CrossRef]
- Tau, O.; Lovergine, N.; Prete, P. Molecular decomposition reactions and early nucleation in CVD growth of graphene on Cu and Si substrates from toluene. In Proceedings of the Low-Dimensional Materials and Devices 2024, San Diego, CA, USA, 2 October 2024. [Google Scholar] [CrossRef]
- Kalchevski, D.A.; Trifonov, D.V.; Kolev, S.K.; Popov, V.N.; Aleksandrov, H.A.; Milenov, T.I. Theoretical study on the mechanisms of formation of primal carbon clusters and nanoparticles in space. Phys. Chem. Chem. Phys. 2025, 27, 1819–1833. [Google Scholar] [CrossRef]
- Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Bussoletti, E.; Colangeli, L. Amorphous carbon grains and PAH molecules in space. MemSAlt 1987, 58, 315–319. [Google Scholar]
- Jones, A.P.; Fanciullo, L.; Köhler, M.; Verstraete, L.; Guillet, V.; Bocchio, M.; Ysard, N. The evolution of amorphous hydrocarbons in the ISM: Dust modelling from a new vantage point. Astron. Astrophys. 2013, 558, 62. [Google Scholar] [CrossRef]
- VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef]
- Kuehne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schuett, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef] [PubMed]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Zhechkov, L.; Heine, T.; Patchkovskii, S.; Seifert, G.; Duarte, H.A. An efficient a Posteriori treatment for dispersion interaction in density-functional-based tight binding. J. Chem. Theory Comput. 2005, 1, 841–847. [Google Scholar] [CrossRef]
- Slater, J.C.; Koster, G.F. Simplified LCAO method for the Periodic Potential Problem. Phys. Rev. 1954, 94, 1498–1524. [Google Scholar] [CrossRef]
- Harris, J. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B 1985, 31, 1770–1779. [Google Scholar] [CrossRef]
- Lee, K.H.; Schnupf, U.; Sumpter, B.G.; Irle, S. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega 2018, 3, 16899–16915. [Google Scholar] [CrossRef]
- Fihey, A.; Jacquemin, D. Performances of Density Functional Tight-Binding Methods for Describing Ground Excited State Geometries of Organic Molecules. J. Chem. Theory Comput. 2019, 15, 6267–6276. [Google Scholar] [CrossRef]
- Gruden, M.; Andjeklović, L.; Jissy, A.K.; Stepanović, S.; Zlatar, M.; Cui, Q.; Elstner, M. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules. J. Comput. Chem. 2017, 38, 2171–2185. [Google Scholar] [CrossRef]
- Jahangiri, S.; Cai, L.; Peslherbe, G.H. Performance of density-functional tight-binding models in describing hydrogen-bonded anionic-water clusters. J. Comput. Chem. 2014, 35, 1707–1715. [Google Scholar] [CrossRef]
- Zheng, G.; Irle, S.; Morokuma, K. Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chem. Phys. Lett. 2005, 412, 210–216. [Google Scholar] [CrossRef]
- Kuhne, T.D.; Krack, M.; Mohamed, F.R.; Parrinello, M. Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Phys. Rev. Lett. 2007, 98, 066401. [Google Scholar] [CrossRef]
- Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. [Google Scholar] [CrossRef]
- Laio, A.; Gervasio, F.L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601. [Google Scholar] [CrossRef]
- Braun, E.; Moosavi, S.M.; Smit, B. Anomalous effects of velocity rescaling algorithms: The flying ice cube effect revisited. J. Chem. Theory Comput. 2018, 14, 5262–5272. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Grutzmacher, H. Catalytic Heterofunctionalization. In Catalytic Hydroamination of Unsaturated Carbon-Carbon Bonds; Togni, A., Grutzmacher, H., Eds.; Wiley: Hoboken, NJ, USA, 2001; pp. 91–133. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalchevski, D.A.; Kolev, S.K.; Trifonov, D.V.; Grozev, I.G.; Aleksandrov, H.A.; Popov, V.N.; Milenov, T.I. An Ab Initio Metadynamics Study Reveals Multiple Mechanisms of Reactivity by a Primal Carbon Cluster Toward Hydrogen and Ammonia in Space. Nanomaterials 2025, 15, 1110. https://doi.org/10.3390/nano15141110
Kalchevski DA, Kolev SK, Trifonov DV, Grozev IG, Aleksandrov HA, Popov VN, Milenov TI. An Ab Initio Metadynamics Study Reveals Multiple Mechanisms of Reactivity by a Primal Carbon Cluster Toward Hydrogen and Ammonia in Space. Nanomaterials. 2025; 15(14):1110. https://doi.org/10.3390/nano15141110
Chicago/Turabian StyleKalchevski, Dobromir A., Stefan K. Kolev, Dimitar V. Trifonov, Ivan G. Grozev, Hristiyan A. Aleksandrov, Valentin N. Popov, and Teodor I. Milenov. 2025. "An Ab Initio Metadynamics Study Reveals Multiple Mechanisms of Reactivity by a Primal Carbon Cluster Toward Hydrogen and Ammonia in Space" Nanomaterials 15, no. 14: 1110. https://doi.org/10.3390/nano15141110
APA StyleKalchevski, D. A., Kolev, S. K., Trifonov, D. V., Grozev, I. G., Aleksandrov, H. A., Popov, V. N., & Milenov, T. I. (2025). An Ab Initio Metadynamics Study Reveals Multiple Mechanisms of Reactivity by a Primal Carbon Cluster Toward Hydrogen and Ammonia in Space. Nanomaterials, 15(14), 1110. https://doi.org/10.3390/nano15141110