Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
Abstract
1. Introduction
2. Methodology
2.1. Device Fabrication
2.2. Characterization Techniques
3. Results and Discussion
3.1. Structural Properties (XRD, XPS, and SEM)
3.2. Optical Properties (UV–Vis and PL)
3.3. Photovoltaic Performance (J–V Characteristics)
3.4. Mechanical Flexibility and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, G.S.; Jung, H.S.; Park, N.G. Recent cutting-edge strategies for flexible perovskite solar cells toward commercialization. Chem. Commun. 2021, 57, 11604–11612. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, P.; Punetha, D. Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review. Prog. Photovolt. Res. Appl. 2023, 31, 753–789. [Google Scholar] [CrossRef]
- Fan, Z.; Zanelli, A.; Monticelli, C.; Li, Q. Flexible Photovoltaic Solar Design. In Lightweight Energy: Membrane Architecture Exploiting Natural Renewable Resources; Springer International Publishing: Cham, Switzerland, 2022; pp. 93–149. [Google Scholar]
- Demchyshyn, D.I.S. Flexible Perovskite Photovoltaics for Biomedical and Aerospace Applications; Johannes Kepler University Linz: Linz, Austria, 2023. [Google Scholar]
- Zanelli, A.; Monticelli, C. Life cycle assessment of organic solar cells and perovskite solar cells with graphene transparent electrodes. J. Renew. Energy 2022, 195, 906–917. [Google Scholar]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 12 June 2025).
- Caprihan, R.; Kumar, A.; Stecke, K.E. Evaluation of the impact of information delays on flexible manufacturing systems performance in dynamic scheduling environments. Int. J. Adv. Manuf. Technol. 2013, 67, 311–338. [Google Scholar] [CrossRef]
- Goje, A.A.; Ludin, N.A.; Fahsyar, P.N.A.; Syafiq, U.; Chelvanathan, P.; Syakirin, A.D.A.G.; Teridi, M.A.; Ibrahim, M.A.; Su’ait, M.S.; Sepeai, S.; et al. Review of flexible perovskite solar cells for indoor and outdoor applications. Mater. Renew. Sustain. Energy 2024, 13, 155–179. [Google Scholar] [CrossRef]
- Xu, R.; Pan, F.; Chen, J.; Li, J.; Yang, Y.; Sun, Y.; Zhu, X.; Li, P.; Cao, X.; Xi, J.; et al. Optimizing the Buried Interface in Flexible Perovskite Solar Cells to Achieve Over 24% Efficiency and Long-Term Stability. Adv. Mater. 2024, 36, 2308039. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, G.; Shen, Y.; Wu, X.; Tang, X.; Han, C.; Chen, Y.; Yang, F.; Chen, H.; Li, Y.; et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 2024, 36, 2403531. [Google Scholar] [CrossRef]
- Liu, P.; Wang, H.; Niu, T.; Yin, L.; Du, Y.; Lang, L.; Zhang, Z.; Tu, Y.; Liu, X.; Chen, X.; et al. Ambient scalable fabrication of high-performance flexible perovskite solar cells. Energy Environ. Sci 2024, 17, 7069–7080. [Google Scholar] [CrossRef]
- Li, Z.; Jia, C.; Wan, Z.; Cao, J.; Shi, J.; Xue, J.; Liu, X.; Wu, H.; Xiao, C.; Li, C.; et al. Boosting mechanical durability under high humidity by bioinspired multisite polymer for high-efficiency flexible perovskite solar cells. Nat. Commun. 2025, 16, 1771. [Google Scholar] [CrossRef]
- Song, F.; Zheng, D.; Feng, J.; Liu, J.; Ye, T.; Li, Z.; Wang, K.; Liu, S.F.; Yang, D. Mechanical durability and flexibility in perovskite photovoltaics: Advancements and applications. Adv. Mater. 2024, 36, e2312041. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, R.; Priya, S.; Liu, S. Recent advances in flexible perovskite solar cells: Fabrication and applications. Angew. Chem. Int. Ed. 2019, 58, 4466–4483. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, X.; Feng, J.; Yang, D.; Liu, S. Semitransparent flexible perovskite solar cells for potential greenhouse applications. Sol. RRL 2021, 5, 2100264. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Forgács, D. Commercial applications of indoor photovoltaics based on flexible perovskite solar cells. ACS Energy Lett. 2022, 7, 3729–3733. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett. 2022, 7, 1412–1445. [Google Scholar] [CrossRef]
- Qamar, M.Z.; Khalid, Z.; Shahid, R.; Tsoi, W.C.; Mishra, Y.K.; Kyaw, A.K.K.; Saeed, M.A. Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self-powered IoT applications. Nano Energy 2024, 129, 109994. [Google Scholar] [CrossRef]
- Li, Y.; Meng, L.; Yang, Y.; Xu, G.; Hong, Z.; Chen, Q.; You, J.; Li, G.; Yang, Y.; Li, Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, G.S.; Park, N.G.; Ko, M.J. Flexible perovskite solar cells. Joule 2019, 3, 1850–1880. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.; Kang, J.; Zhang, L.; Sun, X.; Han, K.; Luo, Q.; Lin, J.; Shi, L.; Ma, C.Q. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes. Flex. Print. Electron. 2019, 4, 034002. [Google Scholar] [CrossRef]
- Kim, S.; Oh, H.; Jeong, I.; Kang, G.; Park, M. Influence of a solvent trap in ITO/PEN substrates on the performance of flexible perovskite solar cells and light-emitting diodes. ACS Appl. Electron. Mater. 2021, 3, 3207–3217. [Google Scholar] [CrossRef]
- Castriotta, L.A.; Pineda, R.F.; Babu, V.; Spinelli, P.; Taheri, B.; Matteocci, F.; Brunetti, F.; Wojciechowski, K.; Di Carlo, A. Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area. ACS Appl. Mater. Interfaces 2021, 13, 29576–29584. [Google Scholar] [CrossRef] [PubMed]
- Dkhili, M.; Lucarelli, G.; De Rossi, F.; Taheri, B.; Hammedi, K.; Ezzaouia, H.; Brunetti, F.; Brown, T.M. Attributes of high-performance electron transport layers for perovskite solar cells on flexible PET versus on glass. ACS Appl. Energy Mater. 2022, 5, 4096–4107. [Google Scholar] [CrossRef] [PubMed]
- Holzhey, P.; Prettl, M.; Collavini, S.; Mortan, C.; Saliba, M. Understanding the impact of surface roughness: Changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells. Sci. Rep. 2023, 13, 6375. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; He, Y.; Mo, H.; Khaleed, A.; Ren, Z.; Li, Y.; Cao, Y.; Tang, J.; Wang, W.T.; Feng, S.P.; et al. Substrate Modifications for Stability Improvements of Flexible Perovskite Solar Cells. Energy Technol. 2024, 12, 2300958. [Google Scholar] [CrossRef]
- Boehme, M.; Charton, C. Properties of ITO on PET film in dependence on the coating conditions and thermal processing. Surf. Coat. Technol. 2005, 200, 932–935. [Google Scholar] [CrossRef]
- Carneiro-da-Cunha, M.G.; Cerqueira, M.A.; Souza, B.W.S.; Carvalho, S.; Quintas, M.A.C.; Teixeira, J.A.; Vicente, A.A. Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr. Polym. 2010, 82, 153–159. [Google Scholar] [CrossRef]
- Zardetto, V.; Brown, T.M.; Reale, A.; Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. B Polym. Phys. 2011, 49, 638–648. [Google Scholar] [CrossRef]
- Lee, H.S.; Bang, J.O.; Lee, H.J.; Lee, G.J.; Chai, K.H.; Jung, S.B. Presented at the Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 31 May–3 June 2011; pp. 1796–1799.
- Faraj, M.; Ibrahim, K.; Ali, M.J. PET as a plastic substrate for the flexible optoelectronic applications. Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5, 879–882. [Google Scholar]
- Wang, C.; Guan, L.; Zhao, D.; Yu, Y.; Grice, C.R.; Song, Z.; Awni, R.A.; Chen, J.; Wang, J.; Zhao, X.; et al. Water Vapor Treatment of Low-Temperature Deposited SnO2 Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 2118–2124. [Google Scholar] [CrossRef]
- Qiu, X.; Yang, B.; Chen, H.; Liu, G.; Liu, Y.; Yuan, Y.; Huang, H.; Xie, H.; Niu, D.; Gao, Y.; et al. Efficient, stable and flexible perovskite solar cells using two-step solution-processed SnO2 layers as electron-transport-material. Org. Electron. 2018, 58, 126–132. [Google Scholar] [CrossRef]
- Xie, H.; Yin, X.; Chen, P.; Liu, J.; Yang, C.; Que, W.; Wang, G. Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application. Mater. Lett. 2019, 234, 311–314. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Zhou, X.; Gao, J.; Chen, W.; Wang, X.; Xu, B. Hydrothermally Treated SnO2 as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Adv. Funct. Mater. 2019, 49, 1807604. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Qiu, L.; Xiong, J.; Song, L.; Du, P. Multifunctional Regulation of SnO2 Nanocrystals by Snail Mucus for Preparation of Rigid or Flexible Perovskite Solar Cells in Air. ACS Nano 2023, 17, 23794–23804. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Ghosh, S.; Singh, T. Progress in materials development for flexible perovskite solar cells and future prospects. ChemSusChem 2021, 14, 512–538. [Google Scholar] [CrossRef]
- Liu, J.; Ye, T.; Yu, D.; Liu, S.; Yang, D. Piezocatalytic Techniques in Environmental Remediation. Angew. Chem. Int. Ed. 2023, 135, 202213927. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, K.; Zhang, X.; Wang, Y.; Song, Y. Optimizing Hole Transport Materials for Perovskite Solar Cells: Spiro-OMeTAD Additives, Derivatives and Substitutes. Chem. Asian J. 2025, 25, e202500056. [Google Scholar] [CrossRef]
- Wan, Z.; Wei, R.; Jiang, S.; Wang, Y.; Yin, H.; Zeng, H.; Azam, M.; Luo, J.; Jia, C. Increasing the Li-TFSI doping concentration in Spiro-OMeTAD enables efficient and stable perovskite solar cells. J. Mater. Chem. C Mater. 2025, 13, 10690–10699. [Google Scholar] [CrossRef]
- Xie, G.; Chen, L.; Liu, J.; Yu, J.; Yin, H.; Li, H.; Yang, Y.; Liang, A.; Chen, Y. Recent Progress on Spiro-type Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. J. Mater. Chem. C Mater. 2025, 13, 2040–2057. [Google Scholar] [CrossRef]
- Kanda, H.; Shibayama, N.; Huckaba, A.J.; Lee, Y.; Paek, S.; Klipfel, N.; Roldán-Carmona, C.; Queloz, V.I.E.; Grancini, G.; Zhang, Y.; et al. Band-bending induced passivation: High performance and stable perovskite solar cells using a perhydropoly (silazane) precursor. Energy Environ. Sci. 2020, 13, 1222–1230. [Google Scholar] [CrossRef]
- Zhang, H.; Pfeifer, L.; Zakeeruddin, S.M.; Chu, J.; Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023, 7, 632–652. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Fu, Q.; Jen, A.K.Y. Methods for passivating defects of perovskite for inverted perovskite solar cells and modules. Adv. Energy Mater. 2024, 14, 2401414. [Google Scholar] [CrossRef]
- Gao, C.; Jia, S.; Yin, X.; Li, Z.; Yang, G.; Chen, J.; Li, Z.; An, X. Enhancing open-circuit voltage in FAPbI 3 perovskite solar cells via self-formation of coherent buried interface FAPbIx Cl3−x. Chem. Commun. 2025, 61, 2758–2761. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hu, X.; Tang, Y.; Lei, Y.; Lau, Y.S.; Chen, Q.; Sui, X.; Zhu, F. Perovskite/organic tandem device to realize light detection and emission dual function. Chem. Eng. J. 2024, 490, 151573. [Google Scholar] [CrossRef]
- Zhu, B.P.; Guo, W.K.; Zhu, B.P.; Zhou, Q.; Shung, K.K.; Zhu, B.P.; Shen, G.Z. Structure and electrical properties of (111)-oriented Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 thin film for ultra-high-frequency transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1962–1967. [Google Scholar] [CrossRef]
- Zhu, B.P.; Wang, Z.Y.; Zhang, Y.; Yu, Z.S.; Shi, J.; Xiong, R. Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 2009, 113, 746–748. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hou, Y.; Zhang, F.; Hao, Y.; Song, J.; Qu, J. Comparison of surface-passivation ability of the BAI salt and its induced 2D perovskite for high-performance inverted perovskite solar cells. RSC Adv. 2021, 11, 23249–23258. [Google Scholar] [CrossRef]
- Xia, J.; Liang, C.; Gu, H.; Mei, S.; Li, S.; Zhang, N.; Chen, S.; Cai, Y.; Xing, G. Surface passivation toward efficient and stable perovskite solar cells. Energy Environ. Mater. 2023, 6, e12296. [Google Scholar] [CrossRef]
- Wang, F.; Geng, W.; Zhou, Y.; Fang, H.-H.; Tong, C.-J.; Loi, M.A.; Liu, L.-M.; Zhao, N. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016, 28, 9986–9992. [Google Scholar] [CrossRef]
- Yoo, H.-S.; Park, N.-G. Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 57–65. [Google Scholar] [CrossRef]
- Kim, G.M.; Sato, H.; Ohkura, Y.; Ishii, A.; Miyasaka, T.; Kim, G.M.; Sato, H.; Ohkura, Y.; Ishii, A.; Miyasaka, T. Phenethylamine-Based Interfacial Dipole Engineering for High Voc Triple-Cation Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2102856. [Google Scholar] [CrossRef]
- Huang, X.; Bi, W.; Jia, P.; Tang, Y.; Lou, Z.; Hu, Y.; Cui, Q.; Hou, Y.; Teng, F. Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Org. Electron. 2019, 67, 101–108. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Z.; Lei, X.; Miao, T.; Zhou, Q.; Chen, R.; Wang, J.; Ren, F.; Pan, Y.; Cai, Y.; et al. Stable Surface Contact with Tailored Alkylamine Pyridine Derivatives for High-Performance Inverted Perovskite Solar Cells. Adv. Mater. 2024, 37, 2415100. [Google Scholar] [CrossRef] [PubMed]
- AlSabeh, G.; Almalki, M.; Kasemthaveechok, S.; Ruiz-Preciado, M.A.; Zhang, H.; Vanthuyne, N.; Zimmermann, P.; Dekker, D.M.; Eickemeyer, F.T.; Hinderhofer, A.; et al. Helical interfacial modulation for perovskite photovoltaics. Nanoscale Adv. 2024, 6, 3029–3033. [Google Scholar] [CrossRef]
- Li, L.; Lai, Y.; Rao, H.; Cai, W.; Zhong, X.; Guo, H.; Pan, Z. 2D/3D Heterojunction Engineering for Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells. ChemSusChem 2025, 18, e202402549. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Z.; Li, H.; Zhou, Y.; Liu, Z.; Wang, K.; Li, Z.; Wang, H.; Qaid, S.M.H.; Mohammed, O.F.; et al. Efficient and stable inverted MA/Br-free 2D/3D perovskite solar cells enabled by α-to-δ phase transition inhibition and crystallization modulation. Energy Environ. Sci. 2025, 18, 1354–1365. [Google Scholar] [CrossRef]
- Shi, Y.R.; Chen, C.H.; Lou, Y.H.; Wang, Z.K. Strategies of perovskite mechanical stability for flexible photovoltaics. Mater. Chem. Front. 2021, 5, 7467–7478. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, Z.; Su, X.; Zou, G.; Zhao, Q. Recent progress toward commercialization of flexible perovskite solar cells: From materials and structures to mechanical stabilities. Adv. Energy Sustain. Res. 2023, 4, 2200133. [Google Scholar] [CrossRef]
- Du, D.; Qiao, F.; Guo, Y.; Wang, F.; Wang, L.; Gao, C.; Zhang, D.; Liang, J.; Xu, Z.; Shen, W.; et al. Photovoltaic performance of flexible perovskite solar cells under bending state. Sol. Energy 2022, 245, 146–152. [Google Scholar] [CrossRef]
- Xie, H.; Liang, T.; Yin, X.; Liu, J.; Liu, D.; Wang, G.; Gao, B.; Que, W. Mechanical stability study on PEDOT: PSS-based ITO-free flexible perovskite solar cells. ACS Appl. Energy Mater. 2022, 5, 3081–3091. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Z.; Almalki, M.; Hope, M.A.; Zhao, J.; Gallet, T.; Krishna, A.; Mishra, A.; Eickemeyer, F.T.; Xu, J.; et al. Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface. Nat. Commun. 2024, 15, 7139. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, G.H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Ligavo, M.M.; Waita, S.; Nyongesa, F.W.; Diale, M. Surface passivation of perovskite thin films through sequential physical vapour deposition for improved stability, structural, optical and morphological properties. Opt. Mater. 2025, 159, 116613. [Google Scholar] [CrossRef]
- Li, M.; Huang, P.; Zhong, H.J. Current understanding of band-edge properties of halide perovskites: Urbach tail, rashba splitting, and exciton binding energy. Phys. Chem. Lett. 2023, 14, 1592–1603. [Google Scholar] [CrossRef]
- Almalki, M.; Alotaibi, M.H.; Alanazi, A.Q.; Eickemeyer, F.T.; Alenzi, S.M.; Alzahrani, Y.A.; Piveteau, L.; Alymani, A.Y.; Albadri, A.; Albrithen, H.; et al. Interfacial Modulation through Mixed-Dimensional Heterostructures for Efficient and Hole Conductor-Free Perovskite Solar Cells. Adv. Funct. Mater. 2024, 34, 2309789. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Wang, X.; Duan, L.; Luo, J. Phenyltrimethylammonium chloride additive for highly efficient and stable FAPbI3 perovskite solar cells. Nano Energy 2024, 123, 109423. [Google Scholar] [CrossRef]
- Pradhan, N. Alkylammonium halides for facet reconstruction and shape modulation in lead halide perovskite nanocrystals. Acc. Chem. Res. 2021, 54, 1200–1208. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Yang, Y.; Wang, Y.; Li, P.; Huang, J.; Li, J.; Lu, Y.; Li, Z.; Wang, Z.; et al. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano 2020, 14, 1560–1568. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Han, J.; He, Z.; Li, T.; Cao, Q.; Yang, J.; Suo, J.; Li, X.; Liu, Z.; et al. Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 2020, 13, 5068–5079. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Tan, W.L.; Lu, J.; Gengenbach, T.R.; McNeill, C.R.; Ge, Z.; Cheng, Y.B.; Bach, U. Alkali cation doping for improving the structural stability of 2D perovskite in 3D/2D PSCs. Nano Lett. 2020, 20, 1240–1251. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Chen, T.; Li, M.; Zhang, X.; Huang, B.; Xu, J.; Wang, G. An inclined groove and its optimization design method for improving the energy performance at the saddle zone of axial flow pumps. Energy 2025, 328, 136527. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.; Feng, C.; Wen, M.; Zhang, Y. A simple and efficient three-dimensional spring element model for pore seepage problems. Eng. Anal. Bound Elem. 2025, 176, 106225. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, S.; Chen, K.; Zhang, J.; Yu, C.; Wu, J.; Wang, P.; Zhang, W.; Wu, Y. Balancing Intermediates Formation on Atomically Pd-Bridged Cu/Cu2O Interfaces for Kinetics-Matching Electrocatalytic C–N Coupling Reaction. Angew. Chem. Int. Ed. 2025, 64, e202503011. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zeng, J.; Zhu, Z.; Dong, S.; Li, W. Study on prestress distribution and structural performance of heptagonal six-five-strut alternated cable dome with inner hole. Structures 2024, 65, 106724. [Google Scholar] [CrossRef]
- Ma, C.; Mu, R.; Li, M.; He, J.; Hua, C.; Wang, L.; Liu, J.; Totis, G.; Yang, J.; Liu, K.; et al. A multi-scale spatial–temporal interaction fusion network for digital twin-based thermal error compensation in precision machine tools. Expert Syst. Appl. 2025, 286, 127812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, I.S.; Alenazi, T.H.; Mansouri, L.A.; Al Mubarak, Z.H.; Al Nahab, Z.T.; Alenzi, S.M.; Alzahrani, Y.A.; Yafi, G.S.; Almutairi, A.; Aldukhail, A.; et al. Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation. Nanomaterials 2025, 15, 1078. https://doi.org/10.3390/nano15141078
Almalki IS, Alenazi TH, Mansouri LA, Al Mubarak ZH, Al Nahab ZT, Alenzi SM, Alzahrani YA, Yafi GS, Almutairi A, Aldukhail A, et al. Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation. Nanomaterials. 2025; 15(14):1078. https://doi.org/10.3390/nano15141078
Chicago/Turabian StyleAlmalki, Ibtisam S., Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, and et al. 2025. "Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation" Nanomaterials 15, no. 14: 1078. https://doi.org/10.3390/nano15141078
APA StyleAlmalki, I. S., Alenazi, T. H., Mansouri, L. A., Al Mubarak, Z. H., Al Nahab, Z. T., Alenzi, S. M., Alzahrani, Y. A., Yafi, G. S., Almutairi, A., Aldukhail, A., Alharthi, B., Aljuwayr, A., Alghannam, F. S., Almuqhim, A. A., Alkhaldi, H., Alhajri, F., AL-Saleem, N. K., Alkahtani, M., Alanazi, A. Q., & Almalki, M. (2025). Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation. Nanomaterials, 15(14), 1078. https://doi.org/10.3390/nano15141078