Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials Fabrication and Characterization
2.3. Photocatalytic and Photoelectrochemical Evaluation
3. Results
3.1. Structural and Optical Properties
Z | Element | Family | Atomic Fraction (%) | Atomic Error (%) | Mass Fraction (%) | Mass Error (%) |
---|---|---|---|---|---|---|
Ag 0.2-PC211 | ||||||
8 | O | K | 66.25 | 3.78 | 39.60 | 4.04 |
22 | Ti | K | 33.71 | 3.78 | 60.30 | 4.05 |
47 | Ag | L | 0.04 | 0.01 | 0.10 | 0.02 |
Ag 0.2-PC211-MoS2 0.05 | ||||||
8 | O | K | 66.05 | 3.60 | 39.24 | 4.02 |
16 | S | K | 0.45 | 0.09 | 0.56 | 0.12 |
22 | Ti | K | 33.20 | 3.63 | 59.2 | 4.14 |
42 | Mo | K | 0.20 | 0.02 | 0.60 | 0.06 |
47 | Ag | L | 0.10 | 0.01 | 0.40 | 0.06 |
Ag 0.2-PC418 | ||||||
8 | O | K | 66.04 | 4.16 | 39.29 | 3.54 |
22 | Ti | K | 33.94 | 4.17 | 60.65 | 3.55 |
47 | Ag | L | 0.02 | 0.00 | 0.06 | 0.01 |
Ag 0.2-PC418-MoS2 0.15 | ||||||
8 | O | K | 64.87 | 3.79 | 38.18 | 3.93 |
16 | S | K | 0.47 | 0.09 | 0.55 | 0.12 |
22 | Ti | K | 34.43 | 3.82 | 60.54 | 4.03 |
42 | Mo | K | 0.20 | 0.01 | 0.62 | 0.06 |
47 | Ag | L | 0.03 | 0.00 | 0.11 | 0.02 |
3.2. Photocatalytic Evaluation
3.3. Band Alignment and Charge Separation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: A review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef]
- Rashid, M.M.; Forte Tavčer, P.; Tomšič, B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Syrrakou, A.; Lagopati, N.; Pavlatou, E.A. Photocatalytic TiO2-based nanostructures as a promising material for diverse environmental applications: A review. Reactions 2024, 5, 135–194. [Google Scholar] [CrossRef]
- Valério, A.; Sárria, M.P.; Rodriguez-Lorenzo, L.; Hotza, D.; Espiña, B.; Gómez González, S.Y. Are TiO2 nanoparticles safe for photocatalysis in aqueous media? Nanoscale Adv. 2020, 2, 4951–4960. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase polymorph of TiO2 (anatase, rutile, brookite, TiO2(B)) for efficient photocatalyst: Fabrication and activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Rega, R.; Fioravanti, A.; Hejazi, S.M.H.; Shahrezaei, M.; Kment, Š.; Maddalena, P.; Naldoni, A.; Lettieri, S. Charge carrier recombination processes, intragap defect states, and photoluminescence mechanisms in stoichiometric and reduced TiO2 brookite nanorods: An interpretation scheme through in situ photoluminescence excitation spectroscopy in controlled environment. Nanoscale 2024, 16, 11296–11309. [Google Scholar] [PubMed]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef]
- He, X.; Kai, T.; Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review. Environ. Chem. Lett. 2021, 19, 4563–4601. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S. Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters. J. Environ. Chem. Eng. 2023, 11, 109635. [Google Scholar] [CrossRef]
- Weng, B.; Zhang, M.; Lin, Y.; Yang, J.; Lv, J.; Han, N.; Xie, J.; Jia, H.; Su, B.; Roeffaers, M.; et al. Photo-assisted technologies for environmental remediation. Nat. Rev. Clean Technol. 2025, 1, 201–215. [Google Scholar] [CrossRef]
- Chen, B.; Meng, Y.; Sha, J.; Zhong, C.; Hu, W.; Zhao, N. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: Progress, challenges and perspective. Nanoscale 2018, 10, 34–68. [Google Scholar] [CrossRef]
- Wang, K.; Fu, X.; Zhang, Q.; Yin, G.; Wei, Z.; Su, W. When MoS2 meets TiO2: Facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications. J. Mater. Chem. C 2021, 9, 8466–8482. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Late, D.; Kumar, A.; Patel, S.; Singh, J. 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Wang, Z.; Mi, B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244. [Google Scholar] [CrossRef]
- Sivaranjani, P.; Janani, B.; Thomas, A.; Raju, L.; Khan, S. Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. J. Clean. Prod. 2022, 352, 131506. [Google Scholar] [CrossRef]
- Rahman, A.; Jennings, J.R.; Tan, A.L.; Khan, M.M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis. ACS Omega 2022, 7, 22089–22110. [Google Scholar] [CrossRef]
- Lei, L.; Huang, D.; Zeng, G.; Cheng, M.; Jiang, D.; Zhou, C.; Chen, S.; Wang, W. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronic properties. Coord. Chem. Rev. 2019, 399, 213020. [Google Scholar] [CrossRef]
- Gopal, R.; Chinnapan, M.M.; Bojarajan, A.K.; Rotte, N.K.; Ponraj, J.S.; Ganesan, R.; Atanas, I.; Nadarajah, M.; Manavalan, R.K.; Gaspar, J. Facile synthesis and defect optimization of 2D-layered MoS2 on TiO2 heterostructure for industrial effluent, wastewater treatments. Sci. Rep. 2020, 10, 21625. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, X.; Liu, Z.; Xu, Y. Visible-light-driven photocatalysis-enhanced nanozyme of TiO2 nanotubes@MoS2 nanoflowers for efficient wound healing infected with multidrug-resistant bacteria. Small 2021, 17, 2103348. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.M.; Lu, X.L.; Yu, X.; Kong, M.H.; Duan, X.D.; Qin, G.; Zhao, Y.H.; Wang, Z.L.; Dionysiou, D.D. Molybdenum disulfide nanosheets vertically grown on self-supported titanium dioxide/nitrogen-doped carbon nanofiber film for effective hydrogen peroxide decomposition and “memory catalysis. J. Colloid Interface Sci. 2021, 596, 384–395. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Mady, A.H.; Mahadadalkar, M.A.; Baynosa, M.L.; Kumar, D.R.; Rabie, A.M.; Lee, J.; Kim, W.K.; Shim, J.-J. Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light. J. Colloid Interface Sci. 2022, 606, 337–352. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kin, H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 2022, 606, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, A.; O’Dwyer, C. Many facets of photonic crystals: From optics and sensors to energy storage and photocatalysis. Adv. Mater. Technol. 2023, 8, 2201410. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, X.; Fu, X.; Teng, D.; Murtaza, G.; Meng, Z.; Jia, Z.; Qiu, L. Slow light effect enhances the photocatalytic effect of inverse opal TiO2-based photonic nanocrystals. ACS Appl. Nano Mater. 2024, 7, 15376–15386. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Y.; Li, A.; Cheng, C. Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Mater. Chem. Front. 2024, 8, 1230–1249. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Ye, M.; Cheng, H. Fabrication of a TiO2 inverse opal film-modified photocatalytic microreactor for highly efficient degradation of dyes. Langmuir 2025, 41, 8138–8143. [Google Scholar] [CrossRef]
- Toumazatou, A.; Antoniadou, M.; Sakellis, E.; Tsoutsou, D.; Gardelis, S.; Romanos, G.E.; Ioannidis, N.; Boukos, N.; Dimoulas, A.; Falaras, P.; et al. Boosting visible light harvesting and charge separation in surface modified TiO2 photonic crystal catalysts with CoOx nanoclusters. Mater. Adv. 2020, 1, 2310–2322. [Google Scholar] [CrossRef]
- Madanu, T.L.; Mouchet, S.R.; Deparis, O.; Liu, J.; Li, Y.; Su, B.-L. Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 2022, 634, 290–299. [Google Scholar] [CrossRef]
- Pylarinou, M.; Toumazatou, A.; Sakellis, E.; Xenogiannopoulou, E.; Gardelis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Visible light trapping against charge recombination in FeOx–TiO2 photonic crystal photocatalysts. Materials 2021, 14, 7117. [Google Scholar] [CrossRef] [PubMed]
- Piwoński, J.; Kisielewska, A.; Piwoński, I. Preparation and photocatalytic activity of TiO2 photonic crystals modified by bimetallic Ag–Pt nanostructures. Catal. Sci. Technol. 2024, 14, 4274–4292. [Google Scholar]
- Toumazatou, A.; Sakellis, E.; Likodimos, V. Improving visible light photocatalysis using optical defects in CoOx-TiO2 photonic crystals. Materials 2024, 17, 5996. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Teng, D.; Meng, Z.; Qiu, L. Inverse opal TiO2-CdS photonic crystal beads with slow light effect for photocatalytic degradation. Appl. Surf. Sci. 2025, 682, 161719. [Google Scholar] [CrossRef]
- Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K.H.; Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl. Acad. Sci. USA 2010, 107, 10354–10359. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, Y.J.; Teng, J.; Lu, X. Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres. ACS Appl. Mater. Interfaces 2012, 4, 5562–5569. [Google Scholar] [CrossRef]
- Vasquez, Y.; Kolle, M.; Mishchenko, L.; Hatton, B.D.; Aizenberg, J. Three-phase co-assembly: In situ incorporation of nanoparticles into tunable, highly ordered, porous silica films. ACS Photon. 2014, 1, 53–60. [Google Scholar] [CrossRef]
- Cai, Z.; Xiong, Z.; Lu, X.; Teng, J. In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity. J. Mater. Chem. A 2014, 2, 545–553. [Google Scholar] [CrossRef]
- Bijl, M.; Lim, K.R.G.; Garg, S.; Nicolas, N.; Visser, N.L.; Aizenberg, M.; Van Der Hoeven, J.E.S.; Aizenberg, J. Controlling nanoparticle placement in Au/TiO2 inverse opal photocatalysts. Nanoscale 2024, 16, 13867–13873. [Google Scholar] [CrossRef] [PubMed]
- Apostolaki, M.-A.; Sakellis, E.; Tsipas, P.; Giannouri, M.; Gardelis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Three-phase co-assembly of compositionally tunable WO3/TiO2 inverse opal photoelectrodes. Appl. Surf. Sci. 2022, 613, 155919. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Sakellis, E.; Kostakis, M.G.; Gerokonstantis, D.-T.; Tsipas, P.; Gardelis, S.; Kontos, A.G.; Katsaros, F.K.; Sideratou, Z.; Romanos, G.E.; et al. Co-assembled MoS2–TiO2 inverse opal photocatalysts for visible light-activated pharmaceutical photodegradation. ACS Omega 2023, 8, 33639–33650. [Google Scholar] [CrossRef] [PubMed]
- Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V.M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 2019, 31, 1805513. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, T.G.U.; Ghobadi, A.; Ozbay, E.; Karadas, F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem 2018, 2, 161–182. [Google Scholar] [CrossRef]
- Nianqiang, W. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696. [Google Scholar]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.; Meng, F.; Senty, T.R.; Bristow, A.D.; Wu, N. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 2015, 9, 601–607. [Google Scholar] [CrossRef]
- Raja-Mogan, T.; Ohtani, B.; Kowalska, E. Photonic crystals for plasmonic photocatalysis. Catalysts 2020, 10, 827. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, H.; Chen, S.; Quan, X.; Zhao, H. Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ. Sci. Technol. 2012, 46, 1724–1730. [Google Scholar] [CrossRef]
- Zhang, L.W.; Lin, C.Y.; Valev, V.K.; Reisner, E.; Steiner, U.; Baumberg, J.J. Plasmonic enhancement in visible-light-driven photocatalysis. Small 2014, 10, 3970–3978. [Google Scholar] [CrossRef] [PubMed]
- Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J.M.; Grachova, E.V.; Kumar, S.; Eslava, S.; Saarinen, J.J. Tailoring Plasmonic photocatalysts with aerosol techniques. ACS Appl. Mater. Interfaces 2020, 12, 41200–41210. [Google Scholar] [CrossRef]
- Raja-Mogan, T.; Lehoux, A.; Takashima, M.; Kowalska, E.; Ohtani, B. One-pot synthesis of noble-metal-modified TiO2 photocatalysts. Chem. Lett. 2021, 50, 711–713. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. J. Colloid Interface Sci. 2021, 604, 131–140. [Google Scholar] [CrossRef]
- Collins, G.; Lonergan, A.; McNulty, D.; Glynn, C.; Buckley, D.; Hu, C.; O’Dwyer, C. Semiconducting metal oxide photonic crystal plasmonic photocatalysts. Adv. Mater. Interfaces 2020, 7, 1901805. [Google Scholar] [CrossRef]
- Pylarinou, M.; Sakellis, E.; Tsipas, P.; Gardelis, S.; Psycharis, V.; Dimoulas, A.; Stergiopoulos, T.; Likodimos, V. Light concentration and electron transfer in plasmonic–photonic Ag,Au modified Mo-BiVO4 inverse opal photoelectrocatalysts. Nanoscale 2024, 16, 10366–10376. [Google Scholar] [CrossRef]
- Nguyen, T.K.N.; Grasset, F.; Ishii, S.; Fudouzi, H.; Uchikoshi, T. Tunable Slow photon effect and local surface plasmon in Ag-immobilized TiO2 inverse opal films for enhancing pollutant photodegradation. Mater. Adv. 2024, 5, 8615–8628. [Google Scholar] [CrossRef]
- Apostolaki, M.-A.; Toumazatou, A.; Antoniadou, M.; Sakellis, E.; Xenogiannopoulou, E.; Gardelis, S.; Boukos, N.; Falaras, P.; Dimoulas, A.; Likodimos, V. Graphene quantum dot-TiO2 photonic crystal films for photocatalytic applications. Nanomaterials 2020, 10, 2566. [Google Scholar] [CrossRef]
- Balaji, S.Y.D.J.R.; Djaoued, Y.; Robichaud, J. Phonon confinement studies in nanocrystalline anatase-TiO2 thin films by micro Raman spectroscopy. J. Raman Spectrosc. 2006, 37, 1416–1422. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Toumazatou, A.; Sakellis, E.; Xenogiannopoulou, E.; Boukos, N.; Dimoulas, A.; Likodimos, V. Heterostructured CoOx–TiO2 mesoporous/photonic crystal bilayer films for enhanced visible-light harvesting and photocatalysis. Materials 2020, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.; Kontoleta, E.; Digdaya, I.A.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A. the role of size and dimerization of decorating plasmonic silver nanoparticles on the photoelectrochemical solar water splitting performance of BiVO4 photoanodes. ChemNanoMat 2016, 2, 739–747. [Google Scholar] [CrossRef]
- Rahul, T.K.; Sandhyarani, N. Plasmonic and photonic effects on hydrogen evolution over chemically modified titania inverse opals. ChemNanoMat 2018, 4, 642–648. [Google Scholar] [CrossRef]
- Temerov, F.; Ankudze, B.; Saarinen, J.J. TiO2 inverse opal structures with facile decoration of precious metal nanoparticles for enhanced photocatalytic activity. Mater. Chem. Phys. 2020, 242, 122471. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, J.; Li, L.; Bai, J.; Xia, L.; Zhou, B. Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl. Catal. B Environ. 2017, 217, 21–29. [Google Scholar] [CrossRef]
- Xia, L.; Li, J.; Bai, J.; Li, L.; Zeng, Q.; Xu, Q.; Zhou, B. Preparation of a BiVO4 nanoporous photoanode based on peroxovanadate reduction and conversion for efficient photoelectrochemical performance. Nanoscale 2018, 10, 2848–2855. [Google Scholar] [CrossRef]
- Feng, J.; Cheng, L.; Zhang, J.; Okoth, O.K.; Chen, F. Preparation of BiVO4/ZnO composite film with enhanced visible-light photoelectrocatalytic activity. Ceram. Int. 2018, 44, 3672–3677. [Google Scholar] [CrossRef]
- Changanaqui, K.; Brillas, E.; Alarcón, H.; Sirés, I. ZnO/TiO2/Ag2Se Nanostructures as Photoelectrocatalysts for the degradation of oxytetracycline in water. Electrochim. Acta 2020, 331, 135194. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Chen, P.; Lv, W.; Liu, G. In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light. J. Catal. 2020, 382, 212–227. [Google Scholar] [CrossRef]
- Guo, Y.; Han, W.; Zhao, K.; Hao, S.; Shia, S.; Ding, Y. Promoting effects of Y doping and FeOOH loading for efficient photoelectrochemical activity on BiVO4 electrodes. New J. Chem. 2022, 46, 13178–13183. [Google Scholar]
- Cong, S.; Yu, J.; Liu, B.; Teng, W.; Tang, Y. Preparing a dual-function BiVO4/NiFe-LDH composite photoanode for enhanced photoelectrocatalytic wastewater treatment and simultaneous hydrogen evolution. New J. Chem. 2022, 46, 15227–15243. [Google Scholar] [CrossRef]
- Lattyak, C.; Gehrke, K.; Vehse, M. Layer-thickness-dependent work function of MoS2 on metal and metal oxide substrates. J. Phys. Chem. C 2022, 126, 13929–13935. [Google Scholar] [CrossRef]
- Park, Y.; Li, N.; Jung, D.; Singh, L.T.; Baik, J.; Lee, E.; Oh, D.; Kim, Y.D.; Lee, J.Y.; Woo, J.; et al. Unveiling the origin of n-type doping of natural MoS2: Carbon. Npj 2D Mater. Appl. 2023, 7, 60. [Google Scholar] [CrossRef]
- Schnippering, M.; Carrara, M.; Foelske, A.; Kötz, R.; Fermín, D.J. Electronic properties of Ag nanoparticle arrays. A Kelvin probe and high resolution XPS study. Phys. Chem. Chem. Phys. 2007, 9, 725–730. [Google Scholar] [CrossRef]
- Zhang, Y.; Pluchery, O.; Caillard, L.; Lamic-Humblot, A.-F.; Casale, S.; Chabal, Y.J.; Salmeron, M. Sensing the charge state of single gold nanoparticles via work function measurements. Nano Lett. 2015, 15, 51–55. [Google Scholar] [CrossRef]
- Kao, K.-C.; Huang, S.-J.; Hsia, Y.-F.; Huang, J.-H.; Mou, C.-Y. Supported Au nanoparticles on TiO2 for visible light photocatalytic H2O2 production: Effects of au particle size and density. ACS Appl. Nano Mater. 2024, 7, 218–229. [Google Scholar] [CrossRef]
Film | D a (nm) | λexp (15°) b (Air) | neff (Air) | 1 − f | neff (H2O) | λ (0°) c (Air) | λ (0°) c (H2O) |
---|---|---|---|---|---|---|---|
PC211-MoS2-0.05 | 140 | 332 | 1.48 | 0.21 | 1.67 | 337 | 381 |
PC418-MoS2-0.15 | 250 | 512 | 1.28 | 0.12 | 1.52 | 523 | 622 |
Photoanode | Morphology | Pollutant/ Concentration | Irradiation Conditions | Kinetic Constant k (min−1) | Ref |
---|---|---|---|---|---|
WO3/Mo-BiVO4 | Nanoplate arrays | TCH 10 mg/L | Xe 300 W, AM 1.5 1 V vs. SCE | 0.0114 | [66] |
BiVO4 | Nanowires | TCH 10 mg/L | Xe 300 W, AM 1.5 1 V vs. Ag/AgCl | 0.0035 | [67] |
BiVO4/ZnO | Nanorods | TC 20 mg/L | Xe 300 W λ > 420 nm, 0.8 V | 0.00867 | [68] |
ZnO/TiO2/Ag2Se | NP/Nanorods | OTC 5 mg/L | 36 W blue LED, 17.3 mW/cm2, 1 V vs. Ag/AgCl | 0.00821 | [69] |
N-doped carbon dots/Vo-rich TiO2 | NCDs/Nanowire arrays | TC 50 mg/L | Xe 300 W, λ > 420 nm, 0.6 V vs. SCE | 0.01911 | [70] |
FeOOH/1%Y-BiVO4 | warm-like | TCH 0.2 mg/L | PLS-SXE 300 W AM 1.5, 0.7 V bias | 0.00631 | [71] |
BiVO4/NiFe | nanoflowers | TC 20 mg/L | Xe 300 W 0.6 V vs. SCE | 0.01281 | [72] |
Ag 0.2-PC211-MoS2 0.05 | Inverse opals | TC 20 mg/L | Xe 300 W, λ > 400 nm 90 mW/cm2, 1 V vs. Ag/AgCl | 0.01125 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loukopoulos, S.; Sakellis, E.; Tsipas, P.; Gardelis, S.; Psycharis, V.; Kostakis, M.G.; Thomaidis, N.S.; Likodimos, V. Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation. Nanomaterials 2025, 15, 1076. https://doi.org/10.3390/nano15141076
Loukopoulos S, Sakellis E, Tsipas P, Gardelis S, Psycharis V, Kostakis MG, Thomaidis NS, Likodimos V. Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation. Nanomaterials. 2025; 15(14):1076. https://doi.org/10.3390/nano15141076
Chicago/Turabian StyleLoukopoulos, Stelios, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis, and Vlassis Likodimos. 2025. "Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation" Nanomaterials 15, no. 14: 1076. https://doi.org/10.3390/nano15141076
APA StyleLoukopoulos, S., Sakellis, E., Tsipas, P., Gardelis, S., Psycharis, V., Kostakis, M. G., Thomaidis, N. S., & Likodimos, V. (2025). Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation. Nanomaterials, 15(14), 1076. https://doi.org/10.3390/nano15141076