Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Electrochemical Measurements
2.4. DFT Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Huang, D.; Guan, Y.; Liu, F.; He, J.; Ding, Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction. ACS Catal. 2021, 11, 14428–14438. [Google Scholar] [CrossRef]
- Suntivich, J.; Xu, Z.; Carlton, C.E.; Kim, J.; Han, B.; Lee, S.W.; Bonnet, N.; Marzari, N.; Allard, L.F.; Gasteiger, H.A.; et al. Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-control of Pt–Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Duan, Q.; Liao, L.; Wang, C. Surface Strain-Regulated Twin-Rich Au-Pt Bimetallic Nanowire for Highly Efficient Alcohol Oxidation Reaction. Chem. Eng. J. 2023, 468, 143411. [Google Scholar] [CrossRef]
- Feng, F.; Ma, C.; Han, S.; Ma, X.; He, C.; Zhang, H.; Cao, W.; Meng, X.; Xia, J.; Zhu, L.; et al. Breaking highly ordered PtPbBi intermetallic with disordered amorphous phase for boosting electrocatalytic hydrogen evolution and alcohol oxidation. Angew. Chem. Int. Ed. 2024, 63, e202405173. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Liang, Y.; Jiang, H.; Wu, S.; Li, Z.; Cui, Z.; Zhu, S.; Gao, Z.; Xu, W. Enhanced Nitrate Reduction Performance of Cu-Doped Nanoporous Co2P Electrocatalyst. Nanomaterials 2025, 15, 753. [Google Scholar] [CrossRef]
- Huang, X.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R.J.; Pattisson, S.; Daniel, I.T.; Miedziak, P.J.; Shaw, G.; et al. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275. [Google Scholar] [CrossRef]
- He, Z.; Wang, R.; Wang, C.; Liao, L. Highly strained interfaces and phase separation for boosting electrochemical methanol oxidation and hydrogen evolution. ACS Appl. Mater. Interfaces 2025, 17, 14109–14118. [Google Scholar] [CrossRef]
- Liu, C.; Shen, Y.; Zhang, J.; Li, G.; Zheng, X.; Han, X.; Xu, L.; Zhu, S.; Chen, Y.; Deng, Y. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505. [Google Scholar] [CrossRef]
- Huang, H.; Ruditskiy, A.; Choi, S.-I.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, N. One-Pot, High-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602–4603. [Google Scholar] [CrossRef]
- He, Z.; Duan, Q.; Wang, C.; Liao, L. Atom-stepped surface-regulated Pd nanowires for boosting alcohol oxidation activity. J. Colloid Interface Sci. 2023, 646, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, X.; Zhang, L.; Yan, S.; Sharma, A.; Zhao, B.; Kumbhar, A.; Zhou, G.; Fang, J. Synthesis of core@ shell Cu-Ni@Pt-Cu nano-octahedra and their improved MOR activity. Angew. Chem. Int. Ed. 2021, 60, 7675–7680. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Xu, M.; Wan, C.; Liu, H.; Li, M.; Huang, Z.; Duan, X.; Pan, X.; Huang, Y. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019, 19, 5431–5436. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Gao, F.; Wang, C.; Li, J.; Zhang, K.; Zhang, Y.; Du, Y. Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939–17944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Feng, Y.; Zhu, X.; Guo, S.; Guo, J.; Huang, X. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774–1603781. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Z.; Gao, W.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 63, 870–874. [Google Scholar] [CrossRef]
- Alinezhad, A.; Gloag, L.; Benedetti, T.M.; Cheong, S.; Webster, R.F.; Roelsgaard, M.; Iversen, B.B.; Schuhmann, W.; Gooding, J.J.; Tilley, R.D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; Shi, F.; Yang, X.; Li, X.; Wu, J.; Yin, Y.; Jin, M. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81. [Google Scholar] [CrossRef]
- Lin, J.; Xi, C.; Li, Z.; Feng, Y.; Wu, D.; Dong, C.; Yao, P.; Liu, H.; Du, X. Lattice-strained palladium nanoparticles as active catalysts for the oxygen reduction reaction. Chem. Commun. 2019, 55, 3121–3123. [Google Scholar] [CrossRef]
- Wei, C.; Sun, S.; Mandler, D.; Wang, X.; Qiao, S.Z.; Xu, Z.J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 2019, 48, 2518–2534. [Google Scholar] [CrossRef]
- Sheng, W.; Myint, M.; Chen, J.G.; Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Kwon, S.G.; Krylova, G.; Phillips, P.J.; Klie, R.F.; Chattopadhyay, S.; Shibata, T.; Bunel, E.E.; Liu, Y.; Prakapenka, V.B.; Lee, B.; et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215–223. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, L.; Wei, X.; Dong, S.; Cao, W.; Ma, D.; Ouyang, Y.; Xie, Y.; Fei, J. A “Special” Solvent to Prepare Alloyed Pd2Ni1 Nanoclusters on a MWCNT Catalyst for Enhanced Electrocatalytic Oxidation of Formic Acid. Nanomaterials 2023, 13, 755. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, J.; Amorim, I.; Li, Y.; Liu, L. Easy preparation of multifunctional ternary PdNiP/C catalysts toward enhanced small organic molecule electro-oxidation and hydrogen evolution reactions. J. Energy Chem. 2021, 58, 256–263. [Google Scholar] [CrossRef]
- Yajima, T.; Wakabayashi, N.; Uchida, H.; Watanabe, M. Adsorbed Water for the Electro-Oxidation of Methanol at Pt-Ru Alloy. Chem. Commun. 2003, 9, 828–829. [Google Scholar] [CrossRef]
- Yu, L.; Ren, Z.; Shen, T.; Li, H.; Wang, L.; Li, X.; Wang, Z.; Yang, Y.; Wei, M. Anchoring Platinum Nanoparticles onto Oxygen Vacancy-Modified Mixed Metal Oxides for Selective Oxidation Reaction of Aromatic Alcohols. ACS Appl. Mater. Interfaces 2025, 17, 13736–13746. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Li, H.; Liao, L. Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances. Nanomaterials 2025, 15, 1047. https://doi.org/10.3390/nano15131047
He Z, Li H, Liao L. Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances. Nanomaterials. 2025; 15(13):1047. https://doi.org/10.3390/nano15131047
Chicago/Turabian StyleHe, Zhen, Huangxu Li, and Lingwen Liao. 2025. "Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances" Nanomaterials 15, no. 13: 1047. https://doi.org/10.3390/nano15131047
APA StyleHe, Z., Li, H., & Liao, L. (2025). Interface Design in Bimetallic PdNi Nanowires for Boosting Alcohol Oxidation Performances. Nanomaterials, 15(13), 1047. https://doi.org/10.3390/nano15131047