Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cs2Na0.2Ag0.8InCl6:y%Mn
2.3. Structural and Optical Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, X.; Liang, Y.; Zhang, Y.; Chen, D.; Shan, X.; Wang, X.-J. Deep-trap ultraviolet persistent phosphor for advanced optical storage application in bright environments. Light Sci. Appl. 2024, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhang, Y.; Xing, F.; Liu, C.; Di, Y.; Yang, X.; Wei, S.; Zhang, X.; Liu, Y.; Gan, Z. Co-multiplexing spectral and temporal dimensions based on luminescent materials. Opt. Express 2023, 31, 24667–24677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zha, Y.; Bao, C.; Hu, F.; Di, Y.; Liu, C.; Xing, F.; Xu, X.; Wen, X.; Gan, Z.; et al. Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater. 2024, 36, 2311524. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Chen, Q.; Zeng, H.; Wang, H.; Liu, L.; Guo, T.; Chen, H.; Wang, R. All optical artificial synapses based on long-afterglow material for optical neural network. Nano Res. 2023, 16, 10004–10010. [Google Scholar] [CrossRef]
- Li, R.; Yue, Z.; Luan, H.; Dong, Y.; Chen, X.; Gu, M. Multimodal artificial synapses for neuromorphic application. Research 2024, 7, 427. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Z.; Cao, X.; Gu, G.; Gan, Z.; Huang, R.; Guo, Y.; Hou, D.; Zhang, X. Highly efficient multifunctional frosted luminescent solar concentrators with zero-energy nightscape lighting. J. Mater. Chem. A 2022, 10, 22145–22154. [Google Scholar] [CrossRef]
- Peng, C.; Chen, X.; Chen, M.; Lu, S.; Wang, Y.; Wu, S.; Liu, X.; Huang, W. Afterglow carbon dots: From fundamentals to applications. Research 2021, 2021, 6098925. [Google Scholar] [CrossRef]
- Wang, G.; Yang, B.; Mei, S.; Wang, B.; Zhang, Z.; Mao, Y.; Guo, J.; Ma, G.; Guo, R.; Xing, G. Persistent charging of CsPbBr3 perovskite nanocrystals confined in glass matrix. Small 2024, 20, 2307785. [Google Scholar] [CrossRef] [PubMed]
- Xiong, P.; Yang, X.; Shen, J. Confinement reaction synthesis of CsPbBr3 quantum dots within long afterglow mesoporous materials as lighting equipment Mater. Today Commun. 2024, 39, 108590. [Google Scholar]
- Hai, O.; Pei, M.; Yang, E.; Ren, Q.; Wu, X.; Zhao, Y.; Du, L. Tunable luminescent color from green to blue on long afterglow materials using CsPbBr3 quantum dots. Appl. Surf. Sci. 2021, 568, 150941. [Google Scholar] [CrossRef]
- Yang, R.; Ji, H.; Zhao, D.; Zhang, F.; Ji, X.; Wang, M.; Zhang, M.; Jia, M.; Chen, X.; Liu, Y.; et al. Modulation of trap distribution by optimizing Mn2+ doed in CsCdCl3 crystals toward enhanced afterglow performance. Appl. Phys. Lett. 2024, 124, 091904. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Zhao, L.; Cao, J.; Yu, X.; Yang, Y.M.; Yu, S.; Qiu, J.; Xu, X. Long persistent luminescence from all-inorganic perovskite nanocrystals. Adv. Opt. Mater. 2020, 8, 2000585. [Google Scholar] [CrossRef]
- Sheng, Y.; Gui, Q.; Zhang, Y.; Yang, X.; Xing, F.; Liu, C.; Di, Y.; Wei, S.; Cao, G.; Yang, X.; et al. Lead-free perovskites with photochromism and reversed thermochromism for repeatable information writing and erasing. Adv. Funct. Mater. 2024, 34, 2406995. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Yang, L.; Xing, F.; Liu, C.; Di, Y.; Cao, G.; Wei, S.; Yang, X.; Zhang, X.; et al. Advanced optical information encryption enabled by polychromatic and stimuli-responsive luminescence of Sb-doped double perovskites. Adv. Sci. 2024, 11, 2308390. [Google Scholar] [CrossRef]
- Han, Y.; Fang, X.; Shi, Z. Advances in chalcogenide perovskites: Fundamentals and applications. Appl. Phys. Rev. 2024, 11, 021338. [Google Scholar] [CrossRef]
- Fu, X.; Li, H.; Yue, H.; Li, Z.; Feng, J.; Zhang, H. Cr3+/Yb3+ codoped Cs2NaInCl6 double perovskites for near-infrared light-emitting diodes. Inorg. Chem. 2025, 64, 8782–8791. [Google Scholar] [CrossRef]
- Karmakar, A.; Bernard, G.M.; Meldrum, A.; Oliynyk, A.O.; Michaelis, V.K. Tailorable indirect to direct band-gap double perovskites with bright white-light emission: Decoding chemical structure using solid-state NMR. J. Am. Chem. Soc. 2020, 142, 10780. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Wang, D.-Y.; Yan, T.-Y.; Wu, Y.-F.; Gong, Z.-L.; Chen, Z.-W.; Yue, C.-Y.; Yan, D.; Lei, X.-W. Synchronously improved multiple afterglow and phosphorescence efficiencies in 0D hybrid zinc halides with ultrahigh anti-water stabilities. Angew Chem. 2024, 63, e202412350. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Liu, N.; Yan, S.; Wang, X.; Zhang, X.; Liu, Y.; Liang, Y.; Zhang, Y.; Liu, H. Solution-grown chloride perovskite crystal of red afterglow. Angew. Chem. 2021, 60, 24450. [Google Scholar] [CrossRef]
- Yang, X.; Sheng, Y.; Zhang, L.; Yang, L.; Xing, F.; Di, Y.; Liu, C.; Hu, F.; Yang, X.; Yang, G.; et al. Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Res. 2024, 17, 9971–9979. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Liu, F.; Qu, J.; Shao, H.; Wang, Z.; Cui, Y.; Ban, D.; Wang, C. Bi and Sb codoped Cs2Ag0.1Na0.9InCl6 double perovskite with excitation-wavelength-dependent dual-emission for anti-counterfeiting application. ACS Appl. Mater. Interfaces 2021, 13, 31031. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zhang, J.; Zhang, X.; Wang, X. Mn2+ activated red long persistent phosphors in BaMg2Si2O7. J. Lumin. 2007, 122–123, 914–916. [Google Scholar] [CrossRef]
- Hazarika, A.; Layek, A.; De, S.; Nag, A.; Debnath, S.; Mahadevan, P.; Chowdhury, A.; Sarma, D.D. Ultranarrow and widely tunable -induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys. Phys. Rev. Lett. 2013, 110, 267401. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, Z.; Fang, S.; Nie, J.; Zhong, H.; Hu, H.; Li, H.; Shi, Y. Emission mechanism of self-trapped excitons in Sb3+-doped all-inorganic metal halide perovskites. J. Phys. Chem. Lett. 2022, 13, 9140. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S.; Rogach, A.L.; Xing, G.; Shi, P.; Wang, F. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606. [Google Scholar] [CrossRef]
- Sun, C.; Guo, Y.-H.; Han, S.-S.; Li, J.-Z.; Jiang, K.; Dong, L.-F.; Liu, Q.-L.; Yue, C.-Y.; Lei, X.-W. Three-dimensional cuprous lead bromide framework with highly efficient and stable blue photoluminescence emission. Angew. Chem. 2020, 59, 16465. [Google Scholar] [CrossRef]
- Yadav, P.; Khurana, S.; Sapra, S. Doping Mn2+ in hybrid Ruddlesden–Popper phase of layered double perovskite (BA)4AgBiBr8. Nanotechnology 2022, 33, 415706. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, X.; Fan, L.; Zheng, Y.Z.; Ma, F.S.; Li, H.B.; Zhao, J.L.; Liu, H.L. Enhancing Mn emission of CsPbCl3 perovskite nanocrystals via incorporation of rubidium ions. Mater. Res. Bull. 2021, 133, 111080. [Google Scholar] [CrossRef]
- Hu, M.; Luo, J.; Li, S.; Liu, J.; Li, J.; Tan, Z.; Niu, G.; Wang, Z.; Tang, J. Broadband emission of double perovskite Cs2Na0.4Ag0.6In0.995Bi0.005Cl6:Mn2+ for single-phosphor white-light-emitting diodes. Opt. Lett. 2019, 44, 4757. [Google Scholar] [CrossRef]
- Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S.; et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995. [Google Scholar] [CrossRef]
- Nila, N.K.; Angshuman, N. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem. Commun. 2018, 54, 5205–5208. [Google Scholar]
- Luo, J.; Wang, X.; Li, S.; Liu, J.; Guo, Y.; Niu, G.; Yao, L.; Fu, Y.; Gao, L.; Dong, Q.; et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541. [Google Scholar] [CrossRef] [PubMed]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chaurasiya, R.; Bheemaraju, A.; Chen, J.-S.; Satapathi, S. Strain-induced band-edge modulation in lead-free antimony-based double perovskite for visible-light absorption. ACS Appl. Energy Mater. 2022, 5, 3926–3932. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, Y.; Sui, L.; Yan, J.; Wang, K.; Yuan, K.; Mao, W.L.; Zou, B. Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett. 2019, 4, 2975–2982. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-L.; Zhu, Y.-L.; Gu, S.-Y.; Xu, J.-Q.; Gan, Z.-X.; Shi, C.-G. Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption. Nanomaterials 2025, 15, 1002. https://doi.org/10.3390/nano15131002
Hu Y-L, Zhu Y-L, Gu S-Y, Xu J-Q, Gan Z-X, Shi C-G. Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption. Nanomaterials. 2025; 15(13):1002. https://doi.org/10.3390/nano15131002
Chicago/Turabian StyleHu, Yu-Lin, Yi-Lin Zhu, Shi-Ying Gu, Jia-Qing Xu, Zhi-Xing Gan, and Chuan-Guo Shi. 2025. "Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption" Nanomaterials 15, no. 13: 1002. https://doi.org/10.3390/nano15131002
APA StyleHu, Y.-L., Zhu, Y.-L., Gu, S.-Y., Xu, J.-Q., Gan, Z.-X., & Shi, C.-G. (2025). Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption. Nanomaterials, 15(13), 1002. https://doi.org/10.3390/nano15131002