Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particles Studied, Reagents, and Culture Media
- Characteristics of the TiO2 studied
- Reagents and cell culture media
2.2. Characterization of TiO2 Nanoparticles
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. X-Ray Diffraction (XRD) Analysis
2.2.3. Dynamic Light Scattering: Diameter and Zeta Potential
2.3. Hemocompatibility Studies
2.3.1. Red Blood Cell Suspension and Plasma Obtainment
2.3.2. Hemolytic Activity
2.3.3. Prothrombin and Partial Thromboplastin Time Determination
2.4. Cell Culture and Cytotoxicity Studies
2.5. Phototoxic Behavior
2.6. Genotoxicity
2.7. Statistical Analysis
3. Results
3.1. Transmission Electron Microscopy (TEM) and X-Ray Diffraction Analysis
3.2. Studies of Dynamic Light Scattering (DLS) and Zeta Potential
Hydrodynamic Diameter of TiO2 and Protein Influence
3.3. Hemocompatibility of TiO2
3.3.1. Hemolytic Activity of TiO2
3.3.2. Effect of TiO2 on Prothrombin and Activated Partial Thromboplastin Time
3.4. Cytotoxicity and Phototoxicity of TiO2 Particles
3.4.1. Study of Potential Interactions or Interferences with Cytotoxic Assays
3.4.2. Cytotoxicity of TiO2 Particles on HaCaT Cells
3.4.3. Phototoxicity of TiO2 Particles on HaCaT Cells
3.5. Genotoxicity of TiO2 Particles on HaCaT Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aPTT | Activated Partial Thromboplastin Time |
CCiTUB | Centres Científics i Tecnològics de la Universitat de Barcelona |
DLS | Dynamic Light Scattering |
DMSO | Dimethyl Sulfoxide |
FBS | Fetal Bovine Serum |
HD | Hydrodynamic Diameter |
LDH | Lactate Dehydrogenase |
MTT | Thiazolyl Blue Tetrazolium Bromide |
NPs | Nanoparticles |
NR | Neutral Red Solution |
NRU | Neutral Red Uptake |
PBS | Phosphate-Buffered Saline Solution |
PDI | Polydispersity Index |
PIF | Photo-Irritation Factor |
PT | Prothrombin Time |
RBC | Red Blood Cell |
ROS | Reactive Oxygen Species |
TEM | Transmission Electron Microscopy |
UV | Ultraviolet |
References
- WHO. Skin Cancer. Available online: https://www.iarc.who.int/cancer-type/skin-cancer/ (accessed on 8 October 2024).
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Chaiyabutr, C.; Sukakul, T.; Kumpangsin, T.; Bunyavaree, M.; Charoenpipatsin, N.; Wongdama, S.; Boonchai, W. Ultraviolet filters in sunscreens and cosmetic products—A market survey. Contact Dermat. 2021, 85, 58–68. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health; National Academies Press (US): Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Jiménez Reinosa, J.; Leret, P.; Álvarez-Docio, C.M.; del Campo, A.; Fernández, J.F. Enhancement of UV absorption behavior in ZnO–TiO2 composites. Bol. Soc. Esp. Cerám. Vidr. 2016, 55, 55–62. [Google Scholar] [CrossRef]
- Borrás, M.C.; Sluyter, R.; Barker, P.J.; Konstantinov, K.; Bakand, S. Y2O3 decorated TiO2 nanoparticles: Enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. J. Photochem. Photobiol. B 2020, 207, 111883. [Google Scholar] [CrossRef]
- Kong, L.; Barber, T.; Aldinger, J.; Bowman, L.; Leonard, S.; Zhao, J.; Ding, M. ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Environ. Toxicol. 2022, 37, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, Y.; Li, P.; Dong, R.; Sun, C.; Song, G.; Wang, Y. Titanium dioxide nanoparticles induce apoptosis through ROS-Ca2+-p38/AKT/mTOR pathway in TM4 cells. J. Appl. Toxicol. 2024, 44, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ. Toxicol. Chem. 2012, 31, 2099–2107. [Google Scholar] [CrossRef]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Opinion on Titanium Dioxide (TiO2), Preliminary Version of 7 August 2020, Final Version of 6 October 2020, SCCS/1617/20. Available online: https://health.ec.europa.eu/system/files/2021-11/sccs_o_238.pdf (accessed on 14 March 2025).
- Sanches, P.L.; Geaquinto, L.R.O.; Cruz, R.; Schuck, D.C.; Lorencini, M.; Granjeiro, J.M.; Ribeiro, A.R.L. Toxicity Evaluation of TiO2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front. Bioeng. Biotechnol. 2020, 8, 575. [Google Scholar] [CrossRef]
- Xuan, L.; Ju, Z.; Skonieczna, M.; Zhou, P.K.; Huang, R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 2020, 4, e327. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2022/63 of 14 January 2022 Amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Additive Titanium Dioxide (E 171). Available online: http://data.europa.eu/eli/reg/2022/63/oj (accessed on 22 April 2025).
- Pokharkar, V.; Chandak, S.; Pawar, R.; Khandke, A. The implications of the EU ban on titanium dioxide: A comprehensive review of safety concerns and alternatives. Ann. Pharm. Fr. 2024, 15, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Mitjans, M.; Marics, L.; Bilbao, M.; Maddaleno, A.S.; Piñero, J.J.; Vinardell, M.P. Size Matters? A Comprehensive In Vitro Study of the Impact of Particle Size on the Toxicity of ZnO. Nanomaterials 2023, 13, 1800. [Google Scholar] [CrossRef]
- Park, S.; Park, J.K. Back to basics: The coagulation pathway. Blood Res. 2024, 59, 35. [Google Scholar] [CrossRef]
- Guadagnini, R.; Halamoda Kenzaoui, B.; Walker, L.; Pojana, G.; Magdolenova, Z.; Bilanicova, D.; Saunders, M.; Juillerat-Jeanneret, L.; Marcomini, A.; Huk, A.; et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015, 9, 13–24. [Google Scholar] [CrossRef]
- OECD. OECD Test No. 432: In vitro 3T3 NRU Phototoxicity Test. In OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Martínez, V.; Galbiati, V.; Corsini, E.; Martin-Venegas, R.; Vinardell, M.P.; Mitjans, M. Establishment of an in vitro photoassay using THP-1 cells and IL-8 to discriminate photoirritants from photoallergens. Toxicol. Vitr. 2013, 27, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- Krishan, A.; Dandekar, P.D. DAPI Fluorescence in Nuclei Isolated from Tumors. J. Histochem. Cytochem. 2005, 53, 1033–1036. [Google Scholar] [CrossRef]
- Natarajan, V.; Wilson, C.L.; Hayward, S.L.; Kidambi, S. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes. PLoS ONE 2015, 10, e0134541. [Google Scholar] [CrossRef]
- Leroux, M.M.; Doumandji, Z.; Chézeau, L.; Gaté, L.; Nahle, S.; Hocquel, R.; Zhernovkov, V.; Migot, S.; Ghanbaja, J.; Bonnet, C.; et al. Toxicity of TiO2 Nanoparticles: Validation of Alternative Models. Int. J. Mol. Sci. 2020, 21, 4855. [Google Scholar] [CrossRef]
- Carrillo-Romero, J.; Mentxaka, G.; García-Salvador, A.; Katsumiti, A.; Carregal-Romero, S.; Goñi-de-Cerio, F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int. J. Mol. Sci. 2024, 25, 10910. [Google Scholar] [CrossRef] [PubMed]
- Niska, K.; Muszyńska, B.; Kowalski, S.; Tomaszewska, E.; Narajczyk, M.; Pawłowska, M.; Majewski, P.W.; Augustin, E.; Inkielewicz-Stepniak, I. Cytotoxicity of ZnO nanoparticles in human melanocyte cells in the presence or absence of UV radiation: A preliminary comparative study with TiO2 nanoparticles. Toxicol. Vitro. 2025, 106, 106051. [Google Scholar] [CrossRef] [PubMed]
- Fornaguera, C.; Calderó, G.; Mitjans, M.; Vinardell, M.P.; Solans, C.; Vauthier, C. Interactions of PLGA nanoparticles with blood components: Protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 2015, 7, 6045–6058. [Google Scholar] [CrossRef] [PubMed]
- Murugadoss, S.; Brassinne, F.; Sebaihi, N.; Petry, J.; Cokic, S.M.; Van Landuyt, K.L.; Godderis, L.; Mast, J.; Lison, D.; Hoet, P.H.; et al. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part. Fibre Toxicol. 2020, 17, 10. [Google Scholar] [CrossRef]
- Allouni, Z.E.; Gjerdet, N.R.; Cimpan, M.R.; Høl, P.J. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles. Int. J. Nanomed. 2015, 10, 687–695. [Google Scholar] [CrossRef]
- Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/insights/polydispersity-what-does-it-mean-for-dls-and-chromatography (accessed on 9 October 2024).
- Rodriguez-Loya, J.; Lerma, M.; Gardea-Torresdey, J.L. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2024, 15, 24. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, R.; Cao, D.; Kong, X.; Lu, Y. Photocatalytic production of hydroxyl radicals by commercial TiO2 nanoparticles and phototoxic hazard identification. Toxicology 2018, 406–407, 1–8. [Google Scholar] [CrossRef]
- Preedia Babu, E.; Subastri, A.; Suyavaran, A.; Premkumar, K.; Sujatha, V.; Aristatile, B.; Alshammari, G.M.; Dharuman, V.; Thirunavukkarasu, C. Size Dependent Uptake and Hemolytic Effect of Zinc Oxide Nanoparticles on Erythrocytes and Biomedical Potential of ZnO-Ferulic acid Conjugates. Sci. Rep. 2017, 7, 4203. [Google Scholar] [CrossRef]
- Yedgar, S.; Barshtein, G.; Gural, A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines 2022, 13, 2091. [Google Scholar] [CrossRef]
- Lozano-Fernández, T.; Dobrovolskaia, M.; Camacho, T.; González-Fernández, A.; Simón-Vázquez, R. Interference of Metal Oxide Nanoparticles with Coagulation Cascade and Interaction with Blood Components. Part. Part. Syst. Charact. 2019, 36, 1800547. [Google Scholar] [CrossRef]
- Huang, H.H.; Chen, Z.H.; Nguyen, D.T.; Tseng, C.M.; Chen, C.S.; Chang, J.H. Blood Coagulation on Titanium Dioxide Films with Various Crystal Structures on Titanium Implant Surfaces. Cells 2022, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
- Kushida, T.; Saha, K.; Subramani, C.; Nandwana, V.; Rotello, V.M. Effect of nano-scale curvature on the intrinsic blood coagulation system. Nanoscale 2014, 6, 14484–14487. [Google Scholar] [CrossRef] [PubMed]
- Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine 2013, 8, 969–981. [Google Scholar] [CrossRef]
- Martínez-Gutierrez, F.; Thi, E.P.; Silverman, J.M.; de Oliveira, C.C.; Svensson, S.L.; Vanden Hoek, A.; Sánchez, E.M.; Reiner, N.E.; Gaynor, E.C.; Pryzdial, E.L.; et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 2012, 8, 328–336. [Google Scholar] [CrossRef]
- Soddu, L.; Trinh, D.N.; Dunne, E.; Kenny, D.; Bernardini, G.; Kokalari, I.; Marucco, A.; Monopoli, M.P.; Fenoglio, I. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. Beilstein J. Nanotechnol. 2020, 11, 550–567. [Google Scholar] [CrossRef]
- Fu, W.; Liu, M.; Wang, Y.; Yang, H.; Ye, A.; Wu, J.; Li, Y.; Yu, Z.; Qiu, Y.; Xu, L. Nano titanium dioxide induces HaCaT cell pyroptosis via regulating the NLRP3/caspase-1/GSDMD pathway. Toxicol. Lett. 2024, 402, 27–37. [Google Scholar] [CrossRef]
- Horie, M.; Sugino, S.; Kato, H.; Tabei, Y.; Nakamura, A.; Yoshida, Y. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity. Toxicol. Mech. Methods 2016, 26, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.J.; Liu, J.; Ehrenshaft, M.; Roberts, J.E.; Fu, P.P.; Mason, R.P.; Zhao, B. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes--generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 2012, 263, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Gackowski, M.; Osmałek, T.; Froelich, A.; Otto, F.; Schneider, R.; Lulek, J. Phototoxic or Photoprotective?—Advances and Limitations of Titanium (IV) Oxide in Dermal Formulations—A Review. Int. J. Mol. Sci. 2023, 24, 8159. [Google Scholar] [CrossRef]
- SCCS. Opinion on Titanium Dioxide (Nano Form), 22 July 2013, Revision of 22 April 2014. 2014. Available online: https://health.ec.europa.eu/document/download/84d32c48-be3a-4ea8-9541-9d48ff99d914_en?filename=sccs_o_136.pdf (accessed on 6 June 2025).
- Xiong, S.; George, S.; Ji, Z.; Lin, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, S.C. Size of TiO2 nanoparticles influences their phototoxicity: An in vitro investigation. Arch. Toxicol. 2013, 87, 99–109. [Google Scholar] [CrossRef]
- Kim, I.Y.; Lee, T.G.; Reipa, V.; Heo, M.B. Titanium Dioxide Induces Apoptosis under UVA Irradiation via the Generation of Lysosomal Membrane Permeabilization-Dependent Reactive Oxygen Species in HaCat Cells. Nanomaterials 2021, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Carriere, M.; Arnal, M.E.; Douki, T. TiO2 genotoxicity: An update of the results published over the last six years. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 854–855, 503198. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.; Jomini, S.; Fessard, V.; Bigorgne-Vizade, E.; Rousselle, C.; Michel, C. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 2018, 12, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, I.; Ponti, J.; Alloa, E.; Ghiazza, M.; Corazzari, I.; Capomaccio, R.; Rembges, D.; Oliaro-Bosso, S.; Rossi, F. Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes. Nanoscale 2013, 5, 6567–6576. [Google Scholar] [CrossRef]
- Rashid, M.M.; Forte Tavčer, P.; Tomšič, B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: The contribution of physicochemical characteristics. Part. Fibre Toxicol. 2009, 6, 33. [Google Scholar] [CrossRef]
Reference | Particle Size | Form | Crystal Structure | Purity | Surface Area |
---|---|---|---|---|---|
718467 | 21 nm (TEM) | White powder | 80% anatase 20% rutile | ≥99.5% | 35–65 m2/g |
14027 | n. s. | White powder | n. s. | 99.0–100.5% | n. s. |
Polymorph | 21 nm | Micro |
---|---|---|
Anatase * | 86.4% | 100% |
18 nm | 123 nm | |
Rutile # | 13.6% | n. d. |
31 nm | n. d. |
Particle Size | Incubation Time | PBS * | PBS + BSA * | PBS + Fib * | DMEM * |
---|---|---|---|---|---|
21 nm | 2 h | 458.0 ± 6.0 | 362.8 ± 16.4 | 403.5 ± 33.8 | 311.4 ± 7.2 $ |
24 h | 485.4 ± 15.1 | 348.1 ± 6.6 $$ | 404.7 ± 57.1 | 288.2 ± 17.2 $$ | |
Micro | 2 h | 478.5 ± 20.5 | 236.3 ± 20.6 $$ | 402.5 ± 16.18 | 280.6 ± 12.4 ¥¥ |
24 h | 606.3 ± 11.4 ¥¥ | 158.8 ± 10.9 $$, ¥¥ | 428.4 ± 5.1 $$ | 280.0 ± 2.9 $$ |
Particle Size | MTT | NRU |
---|---|---|
21 nm | 4.6 ± 0.5 | 3.0 ± 0.5 |
Micro | 1.3 ± 0.3 | 1.3 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaleno, A.S.; Casellas, C.; Teixidó, E.; Guardia-Escote, L.; Vinardell, M.P.; Mitjans, M. Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility. Nanomaterials 2025, 15, 951. https://doi.org/10.3390/nano15120951
Maddaleno AS, Casellas C, Teixidó E, Guardia-Escote L, Vinardell MP, Mitjans M. Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility. Nanomaterials. 2025; 15(12):951. https://doi.org/10.3390/nano15120951
Chicago/Turabian StyleMaddaleno, Adriana S., Clàudia Casellas, Elisabet Teixidó, Laia Guardia-Escote, Maria Pilar Vinardell, and Montserrat Mitjans. 2025. "Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility" Nanomaterials 15, no. 12: 951. https://doi.org/10.3390/nano15120951
APA StyleMaddaleno, A. S., Casellas, C., Teixidó, E., Guardia-Escote, L., Vinardell, M. P., & Mitjans, M. (2025). Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility. Nanomaterials, 15(12), 951. https://doi.org/10.3390/nano15120951