Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calculation Details
3. Results and Discussion
3.1. Structure and Stability of h-MBenes
3.2. Mechanical and Electronic Properties of h-MBenes
3.3. The Storage Capacity and Migration of Alkali Metal on h-MBenes
3.4. Open-Circuit Voltage and Thermal Stability of h-MBene Anodes
3.5. Layer-by-Layer Growth Behavior of Alkali Metals on h-MBene Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Cheng, X.-B.; Jin, Z.; Zhang, R.; Wang, G.; Chen, L.-Q.; Liu, Q.-B.; Huang, J.-Q.; Zhang, Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem 2019, 1, 100003. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Sandoval, S.E.; Haslam, C.G.; Vishnugopi, B.S.; Liao, D.W.; Yoon, J.S.; Park, S.H.; Wang, Y.; Mitlin, D.; Hatzell, K.B.; Siegel, D.J.; et al. Electro-chemo-mechanics of anode-free solid-state batteries. Nat. Mater. 2025, 24, 673–681. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, H.; Liu, H.; Zhao, C.-Z.; Lu, Y.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2100748. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, C.; Lian, R.; Yang, L.; Wang, Y.; Gao, Y.; Xiao, X.; Gogotsi, Y.; Wang, X.; Chen, G.; et al. Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti3C2T MXene Intermediate Layer. Adv. Funct. Mater. 2021, 31, 2010987. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Shen, S.; Li, X.; Hu, X.; Hu, M.; Su, Y.; Ding, S.; Xiao, C. Directing (110) Oriented Lithium Deposition through High-flux Solid Electrolyte Interphase for Dendrite-free Lithium Metal Batteries. Angew. Chem. Int. Ed. 2023, 62, e202309622. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Xiong, Z.; Wang, Y.; Zhou, Y.; Li, X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. Nano-Micro Lett. 2022, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, J.; Sun, Z. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530–23535. [Google Scholar] [CrossRef]
- Gao, S.; Hao, J.; Zhang, X.; Li, L.; Zhang, C.; Wu, L.; Ma, X.; Lu, P.; Liu, G. Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Comput. Mater. 2021, 200, 110776. [Google Scholar] [CrossRef]
- Jia, J.; Li, B.; Duan, S.; Cui, Z.; Gao, H. Monolayer MBenes: Prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale 2019, 11, 20307–20314. [Google Scholar] [CrossRef]
- Miao, N.; Gong, Y.; Zhang, H.; Shen, Q.; Yang, R.; Zhou, J.; Hosono, H.; Wang, J. Discovery of Two-dimensional Hexagonal MBene HfBO and Exploration on its Potential for Lithium-Ion Storage. Angew. Chem. Int. Ed. 2023, 62, e202308436. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Feng, X.; Huang, T.; Huang, Z.; He, X.; Liu, J.; Xiao, Y.; Wang, X.; Zhang, Q. Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries. J. Mater. Sci. Technol. 2025, 212, 67–76. [Google Scholar] [CrossRef]
- Sun, Y.; Li, K.; Wang, B.; Zhang, W.; Wang, E.; Zhou, J.; Sun, Z. Hexagonal Mg2B2 and Ca2B2 monolayers as promising anode materials for Li-ion and Na-ion batteries. Nanoscale 2024, 16, 15699–15712. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- He, Q.; Li, Z.; Xiao, W.; Zhang, C.; Zhao, Y. Computational investigation of 2D 3d/4d hexagonal transition metal borides for metal-ion batteries. Electrochim. Acta 2021, 384, 138404. [Google Scholar] [CrossRef]
- Zou, R.-F.; Ye, X.-J.; Zheng, X.-H.; Jia, R.; Liu, C.-S. Two-dimensional AlB4/Al2B2: High-performance Dirac anode materials for sodium-ion batteries. Phys. Chem. Chem. Phys. 2023, 25, 28814–28823. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Xu, S.; Li, J.; Yuan, S.; Jia, B.; Gao, S.; Liu, G.; Lu, P. Computational Investigation of Two-Dimensional Vanadium Boride Compounds for Na-Ion Batteries. ACS Omega 2022, 7, 14765–14771. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Zhuo, Z.; Wu, X.; Yang, J. Me-graphene: A graphene allotrope with near zero Poisson’s ratio, sizeable band gap, and high carrier mobility. Nanoscale 2020, 12, 19359–19366. [Google Scholar] [CrossRef]
- Fang, Z.; Jiang, J.; Guo, H.; Lin, X.; Wu, X.; Zhuo, Z.; Lu, N. Ultrahigh Potassium Storage Capacity of Ca2Si Monolayer with Orderly Multilayered Growth Mechanism. Small 2024, 20, 2401736. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Jiang, H.R.; Lu, Z.; Wu, M.C.; Ciucci, F.; Zhao, T.S. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 2016, 23, 97–104. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, S.; Zhang, M.; Li, Q.; Su, Z.; Chen, Z. Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: An entirely planar B7P2 monolayer with suitable pore size and distribution. J. Mater. Chem. A 2020, 8, 10301–10309. [Google Scholar] [CrossRef]
- Kulish, V.V.; Malyi, O.I.; Persson, C.; Wu, P. Phosphorene as an anode material for Na-ion batteries: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 13921–13928. [Google Scholar] [CrossRef]
- Abbas, G.; Alay-e-Abbas, S.M.; Laref, A.; Li, Y.; Zhang, W.X. Two-dimensional B3P monolayer as a superior anode material for Li and Na ion batteries: A first-principles study. Mater. Today Energy 2020, 17, 100486. [Google Scholar] [CrossRef]
- Yang, C.; Sun, X.; Zhang, X.; Li, J.; Ma, J.; Li, Y.; Xu, L.; Liu, S.; Yang, J.; Fang, S.; et al. Is graphite nanomesh a promising anode for the Na/K-Ions batteries? Carbon 2021, 176, 242–252. [Google Scholar] [CrossRef]
- Wang, S.; Si, Y.; Yang, B.; Ruckenstein, E.; Chen, H. Two-Dimensional Carbon-Based Auxetic Materials for Broad-Spectrum Metal-Ion Battery Anodes. J. Phys. Chem. Lett. 2019, 10, 3269–3275. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D.; Cui, T. Hd-Graphene: A Hexagon-Deficient Carbon-Based Anode for Metal-Ion Batteries with High Charge/Discharge Rates. ACS Appl. Electron. Mater. 2021, 3, 5147–5154. [Google Scholar] [CrossRef]
- Shu, H.; Li, F.; Hu, C.; Liang, P.; Cao, D.; Chen, X. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 2016, 8, 2918–2926. [Google Scholar] [CrossRef]
- Wen, T.; Qu, B.; Tan, S.; Huang, G.; Song, J.; Wang, Z.; Wang, J.; Tang, A.; Pan, F. Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes. Energy Storage Mater. 2023, 55, 816–825. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Guo, H.; Wu, X.; Lu, N.; Zhuo, Z. Two-Dimensional Biphenylene-Based Carbon Allotrope Family with High Potassium Storage Ability. J. Phys. Chem. Lett. 2023, 14, 9655–9664. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, M.; Lin, S.; Hao, J.; Wang, Y.; Zhao, H.J.; Li, Y. Be2C5 Monolayer with Quasiplanar Pentacoordinate Carbon Atoms and Ultrahigh Energy Density as a Dirac Anode for Potassium-Ion Batteries. PRX Energy 2023, 2, 033012. [Google Scholar] [CrossRef]
- Ni, S.; Jiang, J.; Wang, W.; Wu, X.; Zhuo, Z.; Wang, Z. Beryllium dinitride monolayer: A multifunctional direct bandgap anisotropic semiconductor containing polymeric nitrogen with oxygen reduction catalysis and potassium-ion storage capability. J. Mater. Chem. A 2025, 13, 10214–10223. [Google Scholar] [CrossRef]
AM@M2B2 | Eads (eV) | Δe (e) | LAM-M (Å) | Eb (eV) |
---|---|---|---|---|
Li@Mg2B2 | −0.215 | −0.84 | 3.02 | 0.018 |
Li@Al2B2 | −0.488 | −0.86 | 2.74 | 0.048 |
Li@V2B2 | −0.985 | −0.85 | 2.89 | 0.010 |
Na@Mg2B2 | −0.488 | −0.70 | 3.32 | 0.014 |
Na@Y2B2 | −0.520 | −0.58 | 3.70 | 0.019 |
K@Al2B2 | −1.111 | −0.84 | 3.46 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Guo, H.; Lu, N. Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism. Nanomaterials 2025, 15, 886. https://doi.org/10.3390/nano15120886
Jiang J, Guo H, Lu N. Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism. Nanomaterials. 2025; 15(12):886. https://doi.org/10.3390/nano15120886
Chicago/Turabian StyleJiang, Jiaxin, Hongyan Guo, and Ning Lu. 2025. "Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism" Nanomaterials 15, no. 12: 886. https://doi.org/10.3390/nano15120886
APA StyleJiang, J., Guo, H., & Lu, N. (2025). Ultrahigh Storage Capacity of Alkali Metal Ions in Hexagonal Metal Borides with Orderly Multilayered Growth Mechanism. Nanomaterials, 15(12), 886. https://doi.org/10.3390/nano15120886