Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification
Abstract
:1. Introduction
1.1. Environmental Monitoring
1.2. Healthcare Applications
1.3. Corrosion Resistance
- (1)
- The approach involves modifying the dielectric material properties of TENG, such as through the incorporation of additional materials to create a new type of L-S TENG composite dielectric material, thereby enhancing the “special capacitor’s” energy storage capacity.
- (2)
- The approach involves the use of physical or chemical methods to modify the surface properties of TENG dielectric materials, rendering the dielectric surface either hydrophilic or hydrophobic. The overarching objective of these approaches is to enhance the “special capacitor’s” capacity to capture charges in liquid media. It is noteworthy that research on the synergistic application of composite dielectric materials and surface modification techniques to enhance the power generation capacity of triboelectric nanogenerators (TENGs) remains relatively scarce. What specific roles do these two manufacturing processes—composite dielectric materials and surface modification—play in improving the power generation performance of L-S TENGs? Do they exhibit any mutual influence mechanisms, or does one method exert a greater impact than the other? These questions present a series of intriguing and thought-provoking inquiries. To address these questions, this paper reviews and summarizes existing literature concerning the two primary categories—composite materials and surface modification—that aim to improve the power generation performance of L-S TENGs. Subsequently, an experimental framework titled “Self-Assembled Surface TENG@Carbonyl Iron Particles Doping (SAS-TENG@CIP)” is designed to validate the combined effects of composite materials and surface modifications on L-S TENGs. This experimental setup utilizes carbonyl iron nanoparticles along with polydimethylsiloxane (PDMS) as base materials, generating a hydrophobic microstructured surface array through magnetic field manipulation.
- (1)
- Wang the “TENG” type of “special capacitor”, selecting high-quality composite dielectric materials that minimize current leakage is more critical than merely implementing surface modifications to enhance power generation performance;
- (2)
- The attenuation observed in the SAS-TENG@CIP (spinulose arrays) presented in this study results from a combined effect of both electrostatic breakdown and current leakage mechanisms.
2. Strategies for Enhancing the Power Generation of L-S TENG
2.1. Doped Composite Dielectric Materials
2.2. Surface Morphology Structuring and Chemical Functionalizing
3. Experimental Research Combining Doped Materials and Surface Modification
3.1. Materials and Experimental Methods
3.2. Interesting Results of Experiments Combining Doped Materials with Surface Modification
4. Discussion of Results and Theoretical Analysis
4.1. Theory of Electrical Percolation in Doped Dielectric Materials
4.2. Theory of Electrostatic Breakdown (EB) on Surface Modification
- (1)
- A conductive substrate on the solid surface can exacerbate local breakdown;
- (2)
- Sharp tips or edges can further intensify breakdown and reduce the surface charge density.
5. Conclusions
- (1)
- For all these “TENGs” considered as “special capacitors”, the selection of high-quality composite dielectric materials to minimize current leakage is more critical than solely concentrating on surface modification for power enhancement.
- (2)
- For the enhancement of power generation performance in triboelectric nanogenerators (TENGs), various materials such as insulating polymers, ferroelectric substances, and conductive metals (including metal oxides) are employed as fillers for doping modifications. Each material possesses an inherent threshold; exceeding this threshold can result in a decline in the dielectric constant of high-filler-content composite materials due to weak interfacial interactions and an increase in internal porosity. According to percolation theory, excessive incorporation of conductive metal materials (including metal oxides) as fillers may compromise the internal structure of these “special capacitors” within TENGs. This disruption could lead to chaotic effects or structural failure, ultimately resulting in leakage phenomena (. Moreover, the ML-TENGPro power generation experiment in a fully emulsified liquid has provided some evidence to support the hypothesis that the (A/O/W) droplet structure model is a “charge storage-enhanced droplet”.
- (3)
- For L-S TENGs, while hydrophobic surface modification is an effective approach to enhance power generation performance, it is important to note that, without adequate prevention of electrostatic breakdown (EB), this method alone will encounter an upper threshold limit. The magnitude of this threshold varies depending on the operational environment of L-S TENGs, such as air dryness and the charge carried by droplets during power generation. This variability significantly constrains the practical engineering applications of L-S TENGs. The term “prototype” has been used to refer to the ML-TENG in light of the experimental results presented in Conclusion. However, this does not negate the value of the theoretical insights provided in this paper, which can inform future developments in sensors for assessing the quality of lubricants in power systems.
- (4)
- The performance degradation observed in SAS-TENG@CIP (flat), SAS-TENG@CIP (spinulose arrays), and SAS-TENG@CIP (T-shaped arrays) in this study can be attributed to the experimental validation of percolation theory and electrostatic breakdown (EB) theory. Notably, for SAS-TENG@CIP (spinulose arrays), the degradation is particularly significant due to the synergistic interaction of these two mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.L.; Wang, A.C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.; Feng, P.; Li, D.; et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xu, L.; Xu, C.; Chen, X.; Wang, A.C.; Zhang, B.; Lin, P.; Yang, Y.; Zhao, H.; Wang, Z.L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal–dielectric case. Adv. Mater. 2019, 31, 1808197. [Google Scholar] [CrossRef]
- Cai, C.; Luo, B.; Liu, Y.; Fu, Q.; Liu, T.; Wang, S.; Nie, S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 2022, 52, 299–326. [Google Scholar] [CrossRef]
- Xiang, T.; Chen, X.; Sun, H.; Liu, D.; Jiang, Y.; Chen, S.; Xie, Y.; Zhang, S. Advances in liquid-solid triboelectric nanogenerators and its applications. J. Mater. Sci. Technol. 2024, 214, 153–169. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Vu, D.L.; Le, C.D.; Ahn, K.K. Recent progress in self-powered sensors based on liquid–solid triboelectric nanogenerators. Sensors 2023, 23, 5888. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Qahtan, T.F.; Owolabi, T.O.; Agunloye, A.O.; Rashid, M.; Ali, M.S.M. Waste to sustainable energy based on TENG technology: A comprehensive review. J. Clean. Prod. 2024, 448, 141354. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Q.; Tang, Q.; Liu, W.; Liu, G.; Zhang, Y.; Wu, J.; Hu, C.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, Z.; Zhang, C.; Yuan, W.; Wu, Z.; Wang, J.; Wang, Z.L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, L.; Chen, C.; Liu, W.; Pu, X.; Wu, Z.; Hu, C.; Wang, Z.L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 2020, 75, 104975. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R.X.; et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Wang, J.; Xiong, J.; Li, S.; Zhang, W.; Liu, X.; Gu, G.; Guo, J.; Zhang, B.; Cheng, G.; et al. Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom-up approach. Nano Energy 2020, 71, 104646. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Zhang, S.L.; Ding, W.; Kien, P.T.; Wang, C.; Li, Z.; Pan, X.; Wang, Z.L. A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 2019, 57, 574–580. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, M.; Ma, Z.; Ouyang, H.; Zou, Y.; Zhang, S.L.; Niu, H.; Pan, X.; Xu, M.; Li, Z.; et al. Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting. Adv. Funct. Mater. 2019, 29, 1900327. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Kottapalli, A.G.P.; Pei, Y. Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 2022, 95, 107018. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria. Nano Energy 2022, 93, 106828. [Google Scholar] [CrossRef]
- Xiong, J.; Luo, H.; Gao, D.; Zhou, X.; Cui, P.; Thangavel, G.; Parida, K.; Lee, P.S. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy 2019, 61, 584–593. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, P.; Li, J.; Wang, C.; Chen, J.; Zhu, L.; Zhu, H.; Zhang, D. A self-powered microbiosensor system for specific bacteria detection based on triboelectric nanogenerator. Nano Energy 2022, 98, 107317. [Google Scholar] [CrossRef]
- Li, M.; Cheng, W.-Y.; Li, Y.-C.; Wu, H.-M.; Wu, Y.-C.; Lu, H.-W.; Cheng, S.-L.; Li, L.; Chang, K.-C.; Liu, H.-J.; et al. Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy 2021, 79, 105405. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Kim, H.-G.; Achary, P.G.R.; Pakawanit, P.; Yang, Y.; Mishra, Y.K.; Kim, H.J. Sustainable solutions for oral health monitoring: Biowaste-derived triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 36096–36106. [Google Scholar] [CrossRef]
- Sun, W.; Zheng, Y.; Li, T.; Feng, M.; Cui, S.; Liu, Y.; Chen, S.; Wang, D. Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 2021, 217, 119388. [Google Scholar] [CrossRef]
- Wu, M.; Guo, W.; Dong, S.; Liu, A.; Cao, Y.; Xu, Z.; Lin, C.; Zhang, J. A hybrid triboelectric nanogenerator for enhancing corrosion prevention of metal in marine environment. npj Mater. Degrad. 2022, 6, 73. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.Y.; Kim, J.; Kim, J.H.; Kong, D.S.; Murillo, G.; Lee, G.; Park, J.Y.; Jung, J.H. Ferroelectric-polymer-enabled contactless electric power generation in triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1905816. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Zahed, M.A.; Rahman, M.T.; Salauddin, M.; Lee, S.H.; Park, C.; Maharjan, P.; Bhatta, T.; Shrestha, K.; Park, J.Y. Cobalt-Nanoporous Carbon Functionalized Nanocomposite-Based Triboelectric Nanogenerator for Contactless and Sustainable Self-Powered Sensor Systems. Adv. Funct. Mater. 2021, 31, 2105110. [Google Scholar] [CrossRef]
- Shrestha, K.; Sharma, S.; Pradhan, G.B.; Bhatta, T.; Maharjan, P.; Rana, S.S.; Lee, S.; Seonu, S.; Shin, Y.; Park, J.Y. A Siloxene/Ecoflex Nanocomposite-Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS2/LIG for Self-Powered Touchless Sensor Applications. Adv. Funct. Mater. 2022, 32, 2113005. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Y.; Liu, T.; Zhao, J.; Liu, Y.; Fu, Q.; Mo, J.; Cai, C.; Nie, S. Spheres Multiple Physical Network-Based Triboelectric Materials for Self-Powered Contactless Sensing. Small 2022, 18, 2200577. [Google Scholar] [CrossRef] [PubMed]
- Anaya, D.V.; Zhan, K.; Tao, L.; Lee, C.; Yuce, M.R.; Alan, T. Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy 2021, 90, 106486. [Google Scholar] [CrossRef]
- Xu, Q.; Gong, J.; Chen, J.; Zhang, Y.; Zhao, H.; Yin, J.; Zhao, R.; Lyu, C.; Ding, W.; Wu, C. Contactless Triboelectric Sensing for Real-Time 3D Motion Recognition in Human-Computer Interaction. Adv. Electron. Mater. 2025, 2400950. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Zi, Y.; Niu, S.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z.L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, e8376. [Google Scholar] [CrossRef]
- Zi, Y. Figure of Merit of Triboelectric Nanogenerator. In Handbook of Triboelectric Nanogenerators; Wang, Z.L., Yang, Y., Zhai, J., Wang, J., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Zou, H.; Nguyen, T.D.; Pace, G. Materials and figures of merit for nanogenerators. MRS Bull. 2025, 50, 295–304. [Google Scholar] [CrossRef]
- Cho, E.; Jang, H.S.; Kim, Y.Y.; Yong, H.; Cho, S.-P.; Park, J.-S.; Myung, J.S.; Lee, S.-J. Light and triboelectrification management by nanostructure coupled with plasma-polymerized-fluorocarbon thin film for enhancing performance of energy harvestings. Mater. Today Energy 2024, 39, 101481. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Debeli, D.K.; Guo, J.S. Facile method and novel dielectric material using a nanoparticle-doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces 2018, 10, 13082–13091. [Google Scholar] [CrossRef]
- Chen, B.D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L.P.; Yang, L.J.; He, C.; Chen, J.; Liu, L.; Zhou, T.; et al. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 2018, 11, 3096–3105. [Google Scholar] [CrossRef]
- Biutty, M.N.; Koo, J.M.; Zakia, M.; Handayani, P.L.; Choi, U.H.; Yoo, S.I. Dielectric control of porous polydimethylsiloxane elastomers with Au nanoparticles for enhancing the output performance of triboelectric nanogenerators. RSC Adv. 2020, 10, 21309–21317. [Google Scholar] [CrossRef]
- Mu, J.L.; Han, X.T.; Yu, J.B.; Song, J.S.; He, J.; Geng, W.P.; Zou, J.; Xian, S.; Chou, X.J. Magnetic levitation type double helix self-powered acceleration sensor based on ZnO-RTV Film. Adv. Mater. Technol. 2022, 7, 100802. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, Y.; Li, J.; Zhu, J.; Gao, C.; Zhang, Y.; Wang, J.; Guo, J. An eco-friendly porous nanocomposite fabric-based triboelectric nanogenerator for efficient energy harvesting and motion sensing. ACS Appl. Mater. Interfaces 2020, 12, 42880–42890. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, P.; Li, P.; Deng, L.; Zhang, W.; Liu, B.; Yang, Z. Enhanced performance triboelectric nanogenerator based on porous structure C/MnO2 nanocomposite for energy harvesting. Nano Res. 2022, 15, 7163–7171. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.; Wang, Z.; Bu, M.; Zhai, L.; Wu, S.; Hu, N.; Dai, K.; Wu, L.; Lee, A.; et al. A high performance triboelectric nanogenerator based on ordered doping technique for human-machine interaction sensing. Nano Energy 2022, 95, 107025. [Google Scholar] [CrossRef]
- Chiang, C.K.; Popielarz, R. Polymer composites with high dielectric constant. Ferroelectrics 2002, 275, 1–9. [Google Scholar] [CrossRef]
- Chen, J.; Guo, H.; He, X.; Liu, G.; Xi, Y.; Shi, H.; Hu, C. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Seung, W.; Yoon, H.; Kim, T.Y.; Ryu, H.; Kim, J.; Lee, J.; Lee, J.H.; Kim, S.; Park, Y.K.; Park, Y.J.; et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 2017, 7, 1600988. [Google Scholar] [CrossRef]
- Fang, Z.; Chan, K.H.; Lu, X.; Tan, C.F.; Ho, G.W. Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance. J. Mater. Chem. A 2018, 6, 52–57. [Google Scholar] [CrossRef]
- Park, H.-W.; Huynh, N.D.; Kim, W.; Hwang, H.J.; Hong, H.; Choi, K.; Song, A.; Chung, K.-B.; Choi, D. Effects of embedded TiO2−x nanoparticles on triboelectric nanogeneratorperformance. Micromachines 2018, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Liu, D.; Yin, X.; Guo, H.; Zhou, L.; Li, X.; Zhang, C.; Wang, J.; Wang, Z.L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wei, X.; Li, Y.; Dong, W.; Li, X.; E, S.; Wu, Z.; Wen, J. Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy 2021, 89, 106397. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Sharma, S.; Salauddin, M.; Yoon, S.H.; Park, C.; Maharjan, P.; Bhatta, T.; Park, J.Y. Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 2021, 88, 106300. [Google Scholar] [CrossRef]
- Wang, H.L.; Guo, Z.H.; Zhu, G.; Pu, X.; Wang, Z.L. Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS Nano 2021, 15, 7513–7521. [Google Scholar] [CrossRef]
- Khandelwal, G.; Maria Joseph Raj, N.P.; Kim, S.J. Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 2021, 11, 2101170. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S.H.; Sharma, S.; Salauddin, M.; Rahman, M.T.; Rana, S.M.S.; Park, J.Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene ffuoride composite nanoffbers. Nano Energy 2021, 81, 105670. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Li, R.; Li, D.; Xiang, B.; Li, J.; Liu, Q. Liquid-solid contact electrification through the lens of surface and interface science. Nano Energy 2023, 116, 108834. [Google Scholar] [CrossRef]
- Kim, K.; Ahn, S.K.; Choi, J.H.; Yoo, J.; Eo, Y.-J.; Cho, J.-S.; Cho, A.; Gwak, J.; Song, S.; Cho, D.-H.; et al. Highly efficient Ag-alloyed Cu (In, Ga) Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy 2018, 48, 345–352. [Google Scholar] [CrossRef]
- Niu, S.; Wang, S.; Liu, Y.; Zhou, Y.S.; Lin, L.; Hu, Y.; Pradel, K.C.; Wang, Z.L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349. [Google Scholar] [CrossRef]
- Dudem, B.; Huynh, N.D.; Kim, W.; Kim, D.H.; Hwang, H.J.; Choi, D.; Yu, J.S. Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 2017, 42, 269–281. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Guo, Y.; Zhang, W.; Zhao, Z. Robust working mechanism of water droplet-driven triboelectric nanogenerator: Triboelectric output versus dynamic motion of water droplet. Adv. Mater. Interfaces 2019, 6, 1901547. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, X.; Hao, C.; Zheng, H.; Liu, Y.; Yan, X.; Yang, Z.; Leung, M.; Zeng, X.C.; Xu, R.X.; et al. SLIPS-TENG: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl. Sci. Rev. 2019, 6, 540–550. [Google Scholar] [CrossRef]
- Dong, S.; Xu, F.; Sheng, Y.; Guo, Z.; Pu, X.; Liu, Y. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources. Nano Energy 2020, 78, 105327. [Google Scholar] [CrossRef]
- Wu, L.; Xue, P.; Fang, S.; Gao, M.; Yan, X.; Jiang, H.; Liu, Y.; Wang, H.; Liu, H.; Cheng, B. Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. Mater. Horiz. 2024, 11, 341–362. [Google Scholar] [CrossRef] [PubMed]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, A.; Ushiyama, K.; Sugimura, H.; Takai, O. Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces. Langmuir 1999, 15, 7600–7604. [Google Scholar] [CrossRef]
- Song, G.; Kim, Y.; Yu, S.; Kim, M.-O.; Park, S.-H.; Cho, S.M.; Velusamy, D.B.; Cho, S.H.; Kim, K.L.; Kim, J.; et al. Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem. Mater. 2015, 27, 4749–4755. [Google Scholar] [CrossRef]
- Kil Yun, B.; Kim, J.W.; Kim, H.S.; Jung, K.W.; Yi, Y.; Jeong, M.-S.; Ko, J.-H.; Jung, J.H. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 2015, 15, 523–529. [Google Scholar] [CrossRef]
- Byun, K.-E.; Cho, Y.; Seol, M.; Kim, S.; Kim, S.-W.; Shin, H.-J.; Park, S.; Hwang, S.W. Control of triboelectrification by engineering surface dipole and surface electronic state. ACS Appl. Mater. Interfaces 2016, 8, 18519–18525. [Google Scholar] [CrossRef]
- Yao, C.; Yin, X.; Yu, Y.; Cai, Z.; Wang, X. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.H.; Choi, M.; Jeon, J.; Yoon, H.J.; Choi, J.; Lee, Y.-S.; Lee, M.; Wie, J.J. Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting. Nano Energy 2019, 66, 104158. [Google Scholar] [CrossRef]
- Shanbedi, M.; Ardebili, H.; Karim, A. Polymer-based triboelectric nanogenerators: Materials, characterization, and applications. Prog. Polym. Sci. 2023, 144, 101723. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Li, S.; Huang, Y.; Xu, Y.; She, J.; Zhou, B. Magnetically responsive film decorated with microcilia for robust and controllable manipulation of droplets. ACS Appl. Mater. Interfaces 2021, 13, 1754–1765. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Wang, Z.; Zhao, J.; Liang, Y.; Li, X.; Ren, L. Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures. Chem. Eng. J. 2020, 394, 124871. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Zhang, N. Study on Triboelectric Generator Based on Carbonyl Iron-PDMS Composite Film. Mater’s Dissertation, Chongqing University, Chongqing, China, 2020; pp. 41–43. [Google Scholar]
- Wakino, K.; Okada, T.; Yoshida, N.; Tomono, K. A New Equation for Predicting the Dielectric Constant of a Mixture. J. Am. Ceram. Soc. 1993, 76, 2588–2594. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, X.; Qian, J.; Hu, G.; Huang, Q.; Lu, H. Adjustment and Control of Dielectric Constant of Carbonyl Iron Powder. Mater. Technol. Spacecr. 1989, 50–52. [Google Scholar]
- Ye, C.; Liu, D.; Gao, Y.; Liu, F.; Xu, H.; Jiang, T.; Wang, Z.L. Electrostatic breakdown at liquid-solid-gas triple-phase interfaces owing to contact electrification. Matter 2025, 8, 102007. [Google Scholar] [CrossRef]
Category of the Device | Mode | Dielectric Materials/Electrodes | Application | Output Performance |
---|---|---|---|---|
DB-TENG | S-L (Solid-liquid contact) | FEP/Cu | Energy Harvesting | VOC = 44.0 V Isc = 52.02 nA |
DEG | S-L | PTFE/ITO | Energy Harvesting | VOC = 143.5 V Isc = 270 μA |
WD-TENG | S-L | LDH/Al | Energy Harvesting | VOC = 12.0 V Isc = 2.0 μA |
LST-TENG | S-L | PTFE/Cu | Self-powered Sensor | VOC = 40.0 V Isc = 15 nA |
BSRW-TENG | S-L | BH-resin + BH-PDMS/Au | Self-powered Sensor | VOC = 55.0 V Isc = 110 nA |
Bacteria-Detection TENG | S-L | CNT-Arg/ITO-Van | Self-powered Sensor | VOC = 155.0 V (E. coli) VOC = 165.0 V (P. aeruginosa) |
mSM-TENG | S-L | SMPU + PET/Al | Environmental Monitoring | VOC = 150–320 V Isc = 2.5–4 μA |
TENG(Gnb) | S-L | CNT-ConA/ITO-ConA | Environmental Monitoring | VOC = 150.0 V (S. aureus) VOC = 160.0 V (P. aeruginosa) |
CG-TENG | S-S (Solid-Solid contact) | Silicone Rubber/C-coffee ground | Healthcare | VOC = 150.0 V Isc = 2.1 μA |
TENG (biocompatible bite sensor) | S-S | PVA/Cu | Healthcare | VOC = 20.0 V Isc = 200 nA |
TENGs Array | S-L | PTFE + PET/Cu | Corrosion Resistance | VOC = 105.0 V Isc = 2.68 μA |
S-TENG | S-S&S-L | Sponge + PTFE/Al + Cu | Corrosion Resistance | VOC = 88.9 V Isc = 186 mA |
FE-TENG | Contactless | PVDF + PDMS/ITO | Self-powered Sensor | 0.85~1.23 mW |
CDL-TENG | Contactless | Co-NPC(Ecoflex) + MXene(Ecoflex)/Conductive Fabric(Ag Covered) | Self-powered Sensor | VOC = 21.0 V Isc = 9.85 μAm−2 |
TENG (high-performance) | Contactless | Siloxene(Ecoflex) + MoS2(LIG)/Cu | Self-powered Sensor | VOC = 31.0 V Isc = 7.0 μAm−2 |
CTD | Contactless | Silicone Rubber + Nylon/Cu | Self-powered Sensor | VOC = 0.212 Vm−2 |
NCTS | Contactless | PDMS/Al | Healthcare | VOC = 200 mV |
TENG (PVDF@Ti3C2Tx Spun Film-based) | Contactless | (PVDF)@Ti3C2Tx + PA/Cu | Self-powered Sensor | PD = 200 μW/cm2 Qnc = 128 μC/cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, G.; Yan, J.; Zhang, G.; Weng, Z.; Wang, X.; Pang, H.; Wang, L.; Zhang, D. Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification. Nanomaterials 2025, 15, 872. https://doi.org/10.3390/nano15110872
Wang W, Chen G, Yan J, Zhang G, Weng Z, Wang X, Pang H, Wang L, Zhang D. Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification. Nanomaterials. 2025; 15(11):872. https://doi.org/10.3390/nano15110872
Chicago/Turabian StyleWang, Wei, Ge Chen, Jin Yan, Gaoyong Zhang, Zihao Weng, Xianzhang Wang, Hongchen Pang, Lijun Wang, and Dapeng Zhang. 2025. "Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification" Nanomaterials 15, no. 11: 872. https://doi.org/10.3390/nano15110872
APA StyleWang, W., Chen, G., Yan, J., Zhang, G., Weng, Z., Wang, X., Pang, H., Wang, L., & Zhang, D. (2025). Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification. Nanomaterials, 15(11), 872. https://doi.org/10.3390/nano15110872