Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- Ensure that the sum of the glass compositions for each group is exactly 1 in order to circumvent errors that may be introduced by manual preparation.
- Eliminate redundant data by replacing duplicate entries with median values.
- Remove extreme values, defined as data points outside the 0.05% and 99.95% percentile ranges. Previous research has shown that some of the extreme values can lead to deterioration in model performance.
- Removing components with standard deviations less than 10−3, i.e., characteristics with very low variance.
- Apply Variance Inflation Factor (VIF) to remove features with a high degree of multicollinearity.
- Remove glass with a low fluoride content by setting an appropriate fluoride content threshold for each attribute dataset, a step that allows the model to focus more on the fluoride component and simplifies the number of features, reducing model complexity.
- Select only those compound components present in at least 10 glass compositions to ensure that the data in the training and test sets are representative.
2.2. Machine Learning Algorithms
2.3. SHAP Analysis
3. Results and Discussion
3.1. Analysis of the Datasets Used in This Study
3.2. Predictive Performance Measures
3.3. Interpreting the Induced Models
3.4. Model Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polishchuk, S.A.; Ignat’eva, L.N.; Marchenko, Y.V.; Bouznik, V.M. Oxyfluoride glasses (a review). Glass Phys. Chem. 2011, 37, 1–20. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Luginina, A.A.; Popov, A.I. Transparent oxyfluoride glass ceramics. J. Fluor. Chem. 2015, 172, 22–50. [Google Scholar] [CrossRef]
- Ravinder; Venugopal, V.; Bishnoi, S.; Singh, S.; Zaki, M.; Grover, H.S.; Bauchy, M.; Agarwal, M.; Krishnan, N.M.A. Artificial intelligence and machine learning in glass science and technology: 21 challenges for the 21st century. Int. J. Appl. Glass Sci. 2021, 12, 277–292. [Google Scholar] [CrossRef]
- Lu, X.; Vienna, J.D.; Du, J. Glass formulation and composition optimization with property models: A review. J. Am. Ceram. Soc. 2024, 107, 1603–1624. [Google Scholar] [CrossRef]
- Dreyfus, C.; Dreyfus, G. A machine learning approach to the estimation of the liquidus temperature of glass-forming oxide blends. J. Non-Cryst. Solids 2003, 318, 63–78. [Google Scholar] [CrossRef]
- Brauer, D.S.; Rüssel, C.; Kraft, J. Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: Experimental and modeling using artificial neural networks. J. Non-Cryst. Solids 2007, 353, 263–270. [Google Scholar] [CrossRef]
- Echezarreta-López, M.M.; Landin, M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int. J. Pharmaceut. 2013, 453, 641–647. [Google Scholar] [CrossRef]
- Mauro, J.C.; Tandia, A.; Vargheese, K.D.; Mauro, Y.Z.; Smedskjaer, M.M. Accelerating the design of functional glasses through modeling. Chem. Mater. 2016, 28, 4267–4277. [Google Scholar] [CrossRef]
- Cassar, D.R.; de Carvalho, A.C.; Zanotto, E.D. Predicting glass transition temperatures using neural networks. Acta Mater. 2018, 159, 249–256. [Google Scholar] [CrossRef]
- Krishnan, N.M.A.; Mangalathu, S.; Smedskjaer, M.M.; Tandia, A.; Burton, H.; Bauchy, M. Predicting the dissolution kinetics of silicate glasses using machine learning. J. Non-Cryst. Solids 2018, 487, 37–45. [Google Scholar] [CrossRef]
- Bishnoi, S.; Singh, S.; Ravinder, R.; Bauchy, M.; Gosvami, N.N.; Kodamana, H.; Krishnan, N.M.A. Predicting Young’s modulus of oxide glasses with sparse datasets using machine learning. J. Non-Cryst. Solids 2019, 524, 119643. [Google Scholar] [CrossRef]
- Ravinder, R.; Sridhara, K.H.; Bishnoi, S.; Grover, H.S.; Bauchy, M.; Kodamana, H.; Krishnan, N.M.A. Deep learning aided rational design of oxide glasses. Mater. Horiz. 2020, 7, 1819–1827. [Google Scholar] [CrossRef]
- Deng, B. Machine learning on density and elastic property of oxide glasses driven by large dataset. J. Non-Cryst. Solids 2020, 529, 119768. [Google Scholar] [CrossRef]
- Cassar, D.R.; Mastelini, S.M.; Botari, T.; Alcobaca, E.; de Carvalho, A.C.; Zanotto, E.D. Predicting and interpreting oxide glass properties by machine learning using large datasets. Ceram. Int. 2021, 47, 23958–23972. [Google Scholar] [CrossRef]
- Cassar, D.R. ViscNet: Neural network for predicting the fragility index and the temperature-dependency of viscosity. Acta Mater. 2021, 206, 116602. [Google Scholar] [CrossRef]
- Bishnoi, S.; Ravinder, R.; Grover, H.S.; Kodamana, H.; Krishnan, N.M.A. Scalable Gaussian processes for predicting the optical, physical, thermal, and mechanical properties of inorganic glasses with large datasets. Mater. Adv. 2021, 2, 477–487. [Google Scholar] [CrossRef]
- Zaki, M.; Venugopal, V.; Bhattoo, R.; Bishnoi, S.; Singh, S.K.; Allu, A.R.; Jayadeva; Krishnan, N.M.A. Interpreting the optical properties of oxide glasses with machine learning and Shapely additive explanations. J. Am. Ceram. Soc. 2022, 105, 4046–4057. [Google Scholar] [CrossRef]
- Bishnoi, S.; Badge, S.; Krishnan, N.M.A. Predicting oxide glass properties with low complexity neural network and physical and chemical descriptors. J. Non-Cryst. Solids 2023, 616, 122488. [Google Scholar] [CrossRef]
- Cassar, D.R. GlassNet: A multitask deep neural network for predicting many glass properties. Ceram. Int. 2023, 49, 36013–36024. [Google Scholar] [CrossRef]
- Liu, C.; Su, H. Prediction of glass transition temperature of oxide glasses based on interpretable machine learning and sparse data sets. Mater. Today Commun. 2024, 40, 109691. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Y.; Huang, Y.; Li, Y.; Zhang, C.; Peng, S.; Han, G.; Liu, Y. Theoretical prediction of Vickers hardness for oxide glasses: Machine learning model, interpretability analysis, and experimental validation. Materialia 2024, 33, 102006. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, L.; Li, X.; Gao, W.; Dong, X.; Li, J.; Cao, Y.; Yue, Y.; Kang, J. Interpretable machine learning accelerates development of high-specific modulus glass. Comp. Mater. Sci. 2025, 246, 113482. [Google Scholar] [CrossRef]
- Mastelini, S.M.; Cassar, D.R.; Alcobaça, E.; Botari, T.; de Carvalho, A.C.; Zanotto, E.D. Machine learning unveils composition-property relationships in chalcogenide glasses. Acta Mater. 2022, 240, 118302. [Google Scholar] [CrossRef]
- Singla, S.; Mannan, S.; Zaki, M.; Krishnan, N.M.A. Accelerated design of chalcogenide glasses through interpretable machine learning for composition–property relationships. J. Phys-Mater. 2023, 6, 024003. [Google Scholar] [CrossRef]
- Ahmmad, S.K.; Jabeen, N.; Ahmed, S.T.U.; Hussainy, S.F.; Ahmed, B. Density of fluoride glasses through artificial intelligence techniques. Ceram. Int. 2021, 47, 30172–30177. [Google Scholar] [CrossRef]
- SciGlass. 2025. Available online: https://github.com/epam/SciGlass (accessed on 15 March 2025).
- Glasspy. 2025. Available online: https://glasspy.readthedocs.io/en/latest/index.html (accessed on 15 March 2025).
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- López, O.A.M.; López, A.M.; Crossa, J. Support vector machines and support vector regression. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 337–378. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Agrawa, T. Hyperparameter Optimization in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Bartz, E.; Bartz-Beielstein, T.; Zaefferer, M.; Mersmann, O. Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide; Springer Nature: Berlin/Heidelberg, Germany, 2023; p. 323. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Reback, J.; McKinney, W.; Van Den Bossche, J.; Augspurger, T.; Cloud, P.; Klein, A.; Hawkins, S.; Roeschke, M.; Tratner, J.; She, C.; et al. Pandas-Dev/Pandas: Pandas 1.0.5; Zenodo: Genève, Switzerland, 2020. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Liu, L.; Chen, C.; Wang, B. Predicting financial crises with machine learning methods. J. Forecast. 2022, 41, 871–910. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Lyngdoh, G.A.; Li, H.; Zaki, M.; Krishnan, N.M.A.; Das, S. Elucidating the constitutive relationship of calcium–silicate–hydrate gel using high throughput reactive molecular simulations and machine learning. Sci. Rep. 2020, 10, 21336. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, J.; Li, B.; Li, L. Study on the properties of AlF3-MgF2-SiO2 system low temperature co-fired oxyfluoride glass-ceramics. Rare Metal. Mat. Eng 2009, 38, 1117–1119. [Google Scholar]
- Duan, R.; Liang, K.; Gu, S. The Structure of CaF2-Al2O3-SiO2 System Glass. J. Inorg. Mater. 1998, 13, 593–598. [Google Scholar]
- Peng, K.; Liu, K.; Han, Q.; Wang, Y.; Ma, H. Study on properties of Al2O3-CaO-CaF2 SLAG. Ferro-Alloys 2010, 6, 15–17. [Google Scholar]
Tg | Density | AbbeNumber | Tliq | Log10(TEC) | RefractiveIndex | |
---|---|---|---|---|---|---|
Number of oxides | 29 | 38 | 27 | 11 | 39 | 41 |
Number of fluorides | 43 | 41 | 19 | 28 | 29 | 48 |
count | 4955 | 3806 | 640 | 2669 | 2502 | 5209 |
max | 1087.15 | 8.09 | 107.6 | 1818.15 | −4.44 | 2.29 |
min | 223.15 | 1.79 | 15.53 | 569.15 | −5.43 | 1.27 |
mean | 580.46 | 3.95 | 44.35 | 1009.56 | −4.91 | 1.52 |
Model | Hyperparameter | Tg | Density | AbbeNumber |
---|---|---|---|---|
KNN | n_neighbors | 3 | 3 | 3 |
p | 1 | 1 | 1 | |
weights | distance | distance | distance | |
RF | max_depth | none | none | none |
min_samples_leaf | 1 | 1 | 1 | |
min_samples_split | 2 | 2 | 4 | |
n_estimators | 200 | 400 | 400 | |
SVM | C | 100 | 100 | 100 |
gamma | scale | 1 | scale | |
kernel | poly | rbf | rbf | |
XGBoost | colsample_bytree | 0.9 | 0.8 | 0.9 |
learning_rate | 0.1 | 0.1 | 0.05 | |
max_depth | 9 | 7 | 11 | |
n_estimators | 300 | 300 | 300 | |
subsample | 0.9 | 0.8 | 0.8 |
Model | Hyperparameter | Tliq | Log10(TEC) | RefractiveIndex |
---|---|---|---|---|
KNN | n_neighbors | 3 | 3 | 3 |
p | 1 | 1 | 1 | |
weights | distance | distance | distance | |
RF | max_depth | none | none | none |
min_samples_leaf | 1 | 1 | 1 | |
min_samples_split | 2 | 2 | 2 | |
n_estimators | 300 | 400 | 300 | |
SVM | C | 100 | 1 | 100 |
gamma | scale | scale | 0.1 | |
kernel | rbf | rbf | rbf | |
XGBoost | colsample_bytree | 0.9 | 0.8 | 1 |
learning_rate | 0.2 | 0.05 | 0.2 | |
max_depth | 11 | 11 | 7 | |
n_estimators | 300 | 300 | 300 | |
subsample | 0.8 | 0.9 | 0.9 |
Tg | Density | AbbeNumber | Tliq | Log10(TEC) | RefractiveIndex | |
---|---|---|---|---|---|---|
KNN | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 |
RF | 7.7798 | 6.9369 | 2.0694 | 4.3618 | 8.2211 | 16.2200 |
SVM | 1.5781 | 0.5985 | 0.0380 | 0.1833 | 0.0370 | 0.0812 |
XGBoost | 0.6149 | 0.3840 | 0.4191 | 0.5659 | 0.9105 | 0.5850 |
Tg | Density | AbbeNumber | Tliq | Log10(TEC) | RefractiveIndex | ||
---|---|---|---|---|---|---|---|
R2 | KNN | 0.949 | 0.975 | 0.928 | 0.951 | 0.886 | 0.935 |
RF | 0.944 | 0.970 | 0.916 | 0.951 | 0.860 | 0.949 | |
SVM | 0.954 | 0.978 | 0.899 | 0.883 | 0.845 | 0.777 | |
XGBoost | 0.959 | 0.975 | 0.935 | 0.942 | 0.889 | 0.950 | |
MAE | KNN | 11.588 | 0.094 | 2.223 | 25.111 | 0.034 | 0.011 |
RF | 12.290 | 0.102 | 2.652 | 27.253 | 0.038 | 0.011 | |
SVM | 11.150 | 0.094 | 2.070 | 46.643 | 0.052 | 0.037 | |
XGBoost | 10.939 | 0.097 | 2.176 | 29.622 | 0.036 | 0.010 | |
RMSE | KNN | 20.104 | 0.176 | 4.189 | 44.177 | 0.059 | 0.026 |
RF | 21.149 | 0.192 | 4.530 | 44.365 | 0.065 | 0.023 | |
SVM | 19.094 | 0.167 | 4.980 | 68.118 | 0.068 | 0.048 | |
XGBoost | 18.024 | 0.175 | 3.982 | 47.863 | 0.058 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wang, X. Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning. Nanomaterials 2025, 15, 860. https://doi.org/10.3390/nano15110860
Xie Y, Wang X. Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning. Nanomaterials. 2025; 15(11):860. https://doi.org/10.3390/nano15110860
Chicago/Turabian StyleXie, Yuhao, and Xiangfu Wang. 2025. "Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning" Nanomaterials 15, no. 11: 860. https://doi.org/10.3390/nano15110860
APA StyleXie, Y., & Wang, X. (2025). Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning. Nanomaterials, 15(11), 860. https://doi.org/10.3390/nano15110860