Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films
Abstract
1. Introduction
2. Experimental Setup and Sensor Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; She, J.; Luo, J.; Deng, S.; Chen, J.; Ji, X.; Xu, N. Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators B Chem. 2011, 153, 354–360. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Gao, W. Ultrahigh-response sensor based on hierarchical Pd-WO3 nanoflowers for rapid hydrogen detection. Sens. Actuators B Chem. 2023, 387, 133790. [Google Scholar] [CrossRef]
- Zhao, Z.; Carpenter, M.; Xia, H.; Welch, D. All-optical hydrogen sensor based on a high alloy content palladium thin film. Sens. Actuators B Chem. 2006, 113, 532–538. [Google Scholar] [CrossRef]
- Zhao, Z.; Knight, M.; Kumar, S.; Eisenbraun, E.; Carpenter, M. Humidity effects on Pd/Au-based all-optical hydrogen sensors. Sens. Actuators B Chem. 2008, 129, 726–733. [Google Scholar] [CrossRef]
- Tabib-Azar, M.; Sutapun, B.; Petrick, R.; Kazemi, A. Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sens. Actuators B Chem. 1999, 56, 158–163. [Google Scholar] [CrossRef]
- Butler, M. Micromirror optical-fiber hydrogen sensor. Sens. Actuators B Chem. 1994, 22, 155–163. [Google Scholar] [CrossRef]
- Ou, J.; Yaacob, M.; Campbell, J.; Breedon, M.; Kalantar-zadeh, K.; Wlodarski, W. H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Sens. Actuators B Chem. 2012, 166, 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Shen, W.; Zhao, C.; Xu, B.; Wang, D.; Yang, M. Optical hydrogen sensor based on PDMS-formed double-C cavities with embedded Pt-loaded WO3-SiO2. Sens. Actuators B Chem. 2018, 276, 23–30. [Google Scholar] [CrossRef]
- Lin, K.; Lu, Y.; Chen, J.; Zheng, R.; Wang, P.; Ming, H. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express 2008, 16, 18599–18604. [Google Scholar] [CrossRef]
- Sutapun, B.; Tabib-Azar, M.; Kazemi, A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators B Chem. 1999, 60, 27–34. [Google Scholar] [CrossRef]
- Ma, G.; Li, C.; Luo, Y.; Mu, R.; Wang, L. High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer. Sens. Actuators B Chem. 2012, 169, 195–198. [Google Scholar] [CrossRef]
- Kilinc, N.; Sanduvac, S.; Erkovan, M. Platinum-Nickel alloy thin films for low concentration hydrogen sensor application. J. Alloys Compd. 2022, 892, 162237. [Google Scholar] [CrossRef]
- Kefer, S.; Dai, J.; Yang, M.; Schmauss, B.; Hellmann, R. Hypersensitive H2 sensor based on polymer planar Bragg gratings coated with Pt-loaded WO3-SiO2. Opt. Lett. 2020, 45, 3601–3604. [Google Scholar] [CrossRef]
- Caucheteur, C.; Debliquy, M.; Lahem, D.; Mégret, P. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air. Opt. Express 2008, 16, 16854–16859. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, Y.; Bao, H.; Jin, W.; Ho, H. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range. Optica 2019, 6, 570–576. [Google Scholar] [CrossRef]
- Dai, J.; Peng, W.; Wang, G.; Xiang, F.; Qin, Y.; Wang, M.; Yang, M. Improved performance of fiber optic hydrogen sensor based on WO3-Pd2Pt-Pt composite film and self-referenced demodulation method. Sens. Actuators B Chem. 2017, 249, 210–216. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; Ruan, H.; Ye, Z.; Chai, N.; Wang, X.; Qiu, S.; Bai, W.; Yang, M. Fiber optical hydrogen sensor based on WO3-Pd2Pt-Pt nanocomposite films. Nanomaterials 2021, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Guo, X.; Nie, L.; Wu, X.; Peng, L.; Chen, J. A review on WO3 gasochromic film: Mechanism, preparation and properties. Int. J. Hydrogen Energy 2023, 48, 2442–2465. [Google Scholar] [CrossRef]
- Lee, S.; Cheong, H.; Liu, P.; Smith, D.; Tracy, C.; Mascarenhas, A.; Pitts, J.; Deb, S. Raman spectroscopic studies of gasochromic a-WO3 thin films. Electrochim. Acta 2001, 46, 1995–1999. [Google Scholar] [CrossRef]
- Wittwer, V.; Datz, M.; Ell, J.; Georg, A.; Graf, W.; Walze, G. Gasochromic windows. Sol. Energy Mater. Sol. Cells 2004, 84, 305–314. [Google Scholar] [CrossRef]
- Luo, J.; Deng, S.; Tao, Y.; Zhao, F.; Zhu, L.; Gong, L.; Chen, J.; Xu, N. Evidence of localized water molecule and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. 2009, 113, 15877–15881. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, X.; Yu, S.; Yang, H.; Guo, W.; Li, S.; Zheng, J. Review on amorphous WO3 for eletrochromic devices: Structure, optimization strategies and applications. Mater. Today Chem. 2025, 43, 102513. [Google Scholar] [CrossRef]
- Ievlev, V.; Dontsov, A.; Kannykin, S.; Prizhimov, A.; Solntsev, K.; Roshan, N.; Gorbunov, S. Thermal expansion coefficient of a Pd-Cu solid solution. Inorg. Mater. 2020, 56, 1225–1228. [Google Scholar] [CrossRef]
- Lebon, A.; García-Fuente, A.; Vega, A.; Aguilera-Granja, F. Hydrogen interaction in Pd-Pt alloy nanoparticles. J. Phys. Chem. C 2012, 116, 126–133. [Google Scholar] [CrossRef]
- Dai, J.; Ruan, H.; Zhou, Y.; Yin, K.; Hu, X.; Ye, Z.; Wang, X.; Yang, M.; He, P.; Yang, H. Ultra-high sensitive fiber optic hydrogen sensor in air. J. Light. Technol. 2022, 40, 6583–6589. [Google Scholar] [CrossRef]
- Shuk, P.; Mcguire, C.; Brosha, E. Methane gas sensing technologies in combustion: Comprehensive Review. Sens. Transducers J. 2019, 229, 1–10. [Google Scholar]
- Zhong, J.; Huang, B.; Song, J.; Zhang, X.; Du, L.; Gao, Y.; Liu, W.; Kang, L. Stable WO3 electrochromic system based on NH4+ hydrogen bond chemistry. Chem. Eng. J. 2023, 480, 148098. [Google Scholar] [CrossRef]
- Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Optical fiber evanescent hydrogen sensor based on palladium nanoparticles coated Bragg gratings. Sens. Actuators A Phys. 2023, 361, 114594. [Google Scholar] [CrossRef]
- Dissananyake, K.; Dewi, H.; Schreuders, H.; Bannerberg, L.; Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Advancing hydrogen sensing for sustainable aviation: A metal hydride coated TFBG optical fibre hydrogen sensor. e-J. Nondestruct. Test. 2024, 29, 1–8. [Google Scholar]
- Khanikar, T.; Karki, D.; Su, Y.; Hong, J.; Wang, Y.; Naeem, K.; Ohodnicki, P. Pd/PMMA nanocomposite-coated optical fiber hydrogen sensor operating at room temperature with humidity tolerance. IEEE Sens. J. 2024, 24, 34498–34506. [Google Scholar] [CrossRef]
- Wang, C.; Han, Z.; Wang, C.; Peng, G.; Rao, Y.; Gong, Y. Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3. Sens. Actuators B Chem. 2024, 404, 135250. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Wei, X.; Liu, Q.; Liang, Y.; Wang, J.; Peng, W. Thermo-optic nanomaterial fiber hydrogen sensor. Nanomaterials 2025, 15, 440. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Liu, S.; Chen, P.; Liu, B.; Xiao, H.; Ding, X.; Wang, Y.; Wang, Y. Optically driven nano-beam resonator for hydrogen sensing. J. Light. Technol. 2024, 42, 2611–2616. [Google Scholar] [CrossRef]
- Mandal, S.; Marsh, A.; Faber, H.; Ghoshal, T.; Goswami, D.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. A robust organic hydrogen sensor for distributed monitoring applications. Nat. Electron. 2025, 8, 343–352. [Google Scholar] [CrossRef]
Publication Year, Reference | Sensing Signal, Detection Limit, Response Time, Operating Temperature | Cost of Sensing System |
---|---|---|
2023, [2] | Electric signal, not mentioned, 1 s (500 ppm), 150 °C | Low |
2012, [7] | Reflected optic spetrum, 600 ppm, less than 30 s, 100 °C | High |
2018, [8] | Optical interference spectrum, about 12.5 ppm, 23 s, room temperature | High |
2019, [9] | Raman spectroscopy, several ppm, less than 10 s, room temperature | High |
2020, [13] | Polymer FBG spectrum, 0–0.2%, 5 ppm, tens of seconds, room temperature | High |
2021, [16] | Optical intensity, 5 ppm, more than 5 s (0.4% H2), room temperature | Moderate |
2022, [25] | Optical spectrum, 0.5 ppm, 0.9 s (0.4% H2), 80 °C | High |
2023, [28] | Optical spectrum of FBG, 3000 ppm, less than 90 s, room temperature | High |
2024, [29] | Optical spectrum of TFBG, 100 ppm, not mentioned, room temperature | High |
2024, [30] | Optical transmission measurement, 1000 ppm, 25 s (4% H2), room temperature | High |
2024, [31] | Optical spectrum of FBG, 30 ppm, 25 s (2% H2), room temperature | High |
2024, [32] | FBG spectrum, not mentioned, tens of seconds (0. 5% H2), room temperature | High |
2024, [33] | Frequency shift of optomechanical resonator, 710 ppm, 85 s (4% H2), room temperature | High |
2025, [34] | Electric signal, 192 ppb, 0.84 s (1% H2), room temperature | Low |
This work | Optical intensity, 3 ppm, 0.44 s (0.4% H2), room temperature | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Chen, Z.; Yang, R.; Wu, Z.; Tang, Z.; Hu, W.; Cheng, C.; Wang, X.; Yang, M. Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films. Nanomaterials 2025, 15, 836. https://doi.org/10.3390/nano15110836
Dai J, Chen Z, Yang R, Wu Z, Tang Z, Hu W, Cheng C, Wang X, Yang M. Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films. Nanomaterials. 2025; 15(11):836. https://doi.org/10.3390/nano15110836
Chicago/Turabian StyleDai, Jixiang, Zhangning Chen, Rundong Yang, Zhouyang Wu, Zhengan Tang, Wenbin Hu, Cheng Cheng, Xuewen Wang, and Minghong Yang. 2025. "Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films" Nanomaterials 15, no. 11: 836. https://doi.org/10.3390/nano15110836
APA StyleDai, J., Chen, Z., Yang, R., Wu, Z., Tang, Z., Hu, W., Cheng, C., Wang, X., & Yang, M. (2025). Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films. Nanomaterials, 15(11), 836. https://doi.org/10.3390/nano15110836