Shredded-Coconut-Derived Sulfur-Doped Hard Carbon via Hydrothermal Processing for High-Performance Sodium Ion Anodes
Abstract
:1. Introduction
2. Experimental Sessions
2.1. Synthesis of Materials
2.2. Characterization of Materials
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q. Reconfiguring Hard Carbons with Emerging Sodium-Ion Batteries: A Perspective. Adv. Mater. 2023, 35, e2212186. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Kong, X.; Zhang, P.; Wang, J. Research progress on hard carbon materials in advanced sodium-ion batteries. Energy Storage Mater. 2024, 69, 103386. [Google Scholar] [CrossRef]
- Xie, F.; Xu, Z.; Guo, Z.; Titirici, M.-M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2020, 2, 042002. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, J.; Dong, B.; Lei, M.; Zhang, X.; Xie, W.; Chen, M.; Zhang, K.; Zhou, L. Advances in the structural engineering and commercialization processes of hard carbon for sodium-ion batteries. J. Mater. Chem. A 2023, 12, 1340–1358. [Google Scholar] [CrossRef]
- Zheng, P.; Zhou, W.; Mo, Y.; Zheng, B.; Han, M.; Zhong, Q.; Yang, W.; Gao, P.; Yang, L.; Liu, J. Multi boron-doping effects in hard carbon toward enhanced sodium ion storage. J. Energy Chem. 2024, 100, 730–738. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, B.; Chen, Q.; Peng, X.; Yang, D.; Qiu, F. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Wang, J.; Gan, L.; He, M.; Zhang, T.; Li, P.; Qiu, F. Preparation and application of Mg–Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crop. Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Bu, Q.; Chen, K.; Morgan, H.M., Jr.; Liang, J.; Zhang, X.; Yan, L.; Mao, H. Thermal Behavior and Kinetic Study of the Effects of Zinc-Modified Biochar Catalyst on Lignin and Low-Density Polyethylene (LDPE) Co-Pyrolysis. Trans. ASABE 2018, 61, 1783–1793. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, Y.; Dong, Y. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J. Funct. Foods 2018, 41, 127–134. [Google Scholar] [CrossRef]
- Wang, T.; Shi, Z.; Zhong, Y.; Ma, Y.; He, J.; Zhu, Z.; Cheng, X.; Lu, B.; Wu, Y. Biomass-Derived Materials for Advanced Rechargeable Batteries. Small 2024, 20, e2310907. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Ding, J.; Zhang, T.; Yang, D.; Qiu, F.; Chen, Q.; Xu, J. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod. Process. 2019, 115, 134–142. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, D.; Guo, Q.; Qiu, F.; Yang, D.; Ou, Z. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu. Food Bioprod. Process. 2019, 114, 154–162. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.-J.; Chen, W.-P.; Duan, H.; Ye, H.; Yao, H.-R.; Yin, Y.-X.; Cao, F.-F. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 2022, 16, 3832–3838. [Google Scholar] [CrossRef]
- Kim, J.; Yu, D.; Oh, E.; Jang, J.; Kim, J.; Yang, J. Carbonization temperature dependent structural modifications of waste coffee grounds derived hard carbons and their electrochemical behaviors as anode materials for sodium ion batteries. Carbon Lett. 2024, 35, 351–363. [Google Scholar] [CrossRef]
- Li, Y.; Xia, D.; Tao, L.; Xu, Z.; Yu, D.; Jin, Q.; Lin, F.; Huang, H. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 28461–28472. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, M.; Bai, Y.; Wang, X.; Dong, R.; Wu, C. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 12554–12561. [Google Scholar] [CrossRef]
- Oktay, Z.M.; Onal, Y.; Depci, T.; Altundag, S.; Altin, S.; Yaşar, S.; Altin, E. Investigation of electrochemical performance of Na-ion batteries by hard carbon anodes produced by biomass of Prunus armeniaca seeds. J. Mater. Sci. Mater. Electron. 2023, 34, 1–12. [Google Scholar] [CrossRef]
- Rao, Y.B.; Saisrinu, Y.; Khatua, S.; Bharathi, K.K.; Patro, L. Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for Na-ion batteries. J. Alloys Compd. 2023, 968, 171917. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Park, M.; Nakate, U.T.; Karanikolos, G.N.; Nagaraju, G.; AlHammadi, A.A.; Kim, D.-W. Intrinsically Nitrogen-Enriched Biomass-Derived Hard Carbon with Enhanced Performance as a Sodium-Ion Battery Anode. Energy Fuels 2024, 38, 7368–7378. [Google Scholar] [CrossRef]
- Wang, D.; Du, G.; Han, D.; Su, Q.; Ding, S.; Zhang, M.; Zhao, W.; Xu, B. Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries. Carbon 2021, 181, 1–8. [Google Scholar] [CrossRef]
- Yang, T.; Qian, T.; Wang, M.; Shen, X.; Xu, N.; Sun, Z.; Yan, C. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. Adv. Mater. 2015, 28, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, T.; Wang, F.; Ran, F. High-efficiently doping nitrogen in kapok fiber-derived hard carbon used as anode materials for boosting rate performance of sodium-ion batteries. J. Energy Chem. 2024, 96, 472–482. [Google Scholar] [CrossRef]
- Song, Z.; Di, M.; Chen, S.; Bai, Y. Three-dimensional N/O co-doped hard carbon anode enabled superior stabilities for sodium-ion batteries. Chem. Eng. J. 2023, 470, 144237. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, J.-W.; Liu, H.; Chen, Y.-X.; Lu, C.-Z. Lotus pollen-templated synthesis of C, N, P-self doped KTi2(PO4)3/TiO2 for sodium ion battery. Colloid Surface A 2022, 650, 129605. [Google Scholar] [CrossRef]
- Wu, D.; Sun, F.; Qu, Z.; Wang, H.; Lou, Z.; Wu, B.; Zhao, G. Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 2022, 10, 17225–17236. [Google Scholar] [CrossRef]
- Zou, X.; Dong, C.; Jin, Y.; Wang, D.; Li, L.; Wu, S.; Xu, Z.; Chen, Y.; Li, Z.; Yang, H. Engineering of N, P co-doped hierarchical porous carbon from sugarcane bagasse for high-performance supercapacitors and sodium ion batteries. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 672, 131715. [Google Scholar] [CrossRef]
- He, B.; Feng, L.; Hong, G.; Yang, L.; Zhao, Q.; Yang, X.; Yin, S.; Meng, Y.; Xiao, D.; Wang, Y.; et al. A generic F-doped strategy for biomass hard carbon to achieve fast and stable kinetics in sodium/potassium-ion batteries. Chem. Eng. J. 2024, 490, 151636. [Google Scholar] [CrossRef]
- Mahato, S.; Das, A.; Biswas, K. Experimental and theoretical investigation on boron, phosphorus dual doped hard carbon as anode for sodium-ion battery. J. Energy Storage 2024, 104, 114422. [Google Scholar] [CrossRef]
- Tzadikov, J.; Levy, N.R.; Abisdris, L.; Cohen, R.; Weitman, M.; Kaminker, I.; Goldbourt, A.; Ein-Eli, Y.; Shalom, M. Bottom-Up Synthesis of Advanced Carbonaceous Anode Materials Containing Sulfur for Na-Ion Batteries. Adv. Funct. Mater. 2020, 30, 2000592. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Yao, J.; Tang, Z.; Sun, Y.; Zhang, K.; Li, H.; Ma, T.; Qiu, J. Unveiling the role of intrinsic defects in N/S Co-Doped hard carbon for superior sodium-ion batteries. Chem. Eng. J. 2024, 503, 158441. [Google Scholar] [CrossRef]
- Zhao, G.; Yu, D.; Zhang, H.; Sun, F.; Li, J.; Zhu, L.; Sun, L.; Yu, M. Flemming Besenbacher, Ye Sun, Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. Nano Energy 2020, 67, 104219. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, G.; Hou, H.; Ge, P.; Cao, X.; Ji, X. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J. Mater. Chem. A 2017, 5, 24353–24360. [Google Scholar] [CrossRef]
- Hao, E.; Liu, W.; Liu, S.; Zhang, Y.; Wang, H.; Chen, S.; Cheng, F.; Zhao, S.; Yang, H. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. J. Mater. Chem. A 2017, 5, 2204–2214. [Google Scholar] [CrossRef]
- Antorán, D.; Alvira, D.; Sebastián, V.; Manyà, J.J. Enhancing waste hemp hurd-derived anodes for sodium-ion batteries through hydrochloric acid-mediated hydrothermal pretreatment. Biomass-Bioenergy 2024, 184, 107197. [Google Scholar] [CrossRef]
- Alvira, D.; Antorán, D.; Darjazi, H.; Elia, G.A.; Gerbaldi, C.; Sebastian, V.; Manyà, J.J. High performing and sustainable hard carbons for Na-ion batteries through acid-catalysed hydrothermal carbonisation of vine shoots. J. Mater. Chem. A 2024, 13, 2730–2741. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Liao, Y.; Zhang, Z.; Luo, S.; Li, L.; Wu, Y.; Qing, Y. Tuning carbonized wood fiber via sacrificial template-assisted hydrothermal synthesis for high-performance lithium/sodium-ion batteries. J. Power Sources 2022, 546, 231993. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Guo, Z.; Xie, F.; Liu, H.; Yadegari, H.; Tebyetekerwa, M.; Ryan, M.P.; Hu, Y.; Titirici, M. The Role of Hydrothermal Carbonization in Sustainable Sodium-Ion Battery Anodes. Adv. Energy Mater. 2022, 12, 2200208. [Google Scholar] [CrossRef]
- Zhou, L.; Cui, Y.; Niu, P.; Ge, L.; Zheng, R.; Liang, S.; Xing, W. Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation. Carbon 2024, 231, 119733. [Google Scholar] [CrossRef]
- Sun, M.; Zhou, Y.; Yang, M. Preparation of corn stover hydrothermal carbon sphere-CdS/g-C3N4 composite and evaluation of its performance in the photocatalytic co-reduction of CO2 and decomposition of water for hydrogen production. J. Alloys Compd. 2022, 933, 167871. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Chung, S.-C.; Ming, J.; Lander, L.; Lu, J.; Yamada, A. Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: Comparison with phosphate and alluaudite phases. J. Mater. Chem. A 2018, 6, 3919–3925. [Google Scholar] [CrossRef]
- Pati, J.; Raj, H.; Sapra, S.K.; Dhaka, A.; Bera, A.K.; Yusuf, S.M.; Dhaka, R.S. Unraveling the diffusion kinetics of honeycomb structured Na2Ni2TeO6 as a high-potential and stable electrode for sodium-ion batteries. J. Mater. Chem. A 2022, 10, 15460–15473. [Google Scholar] [CrossRef]
- Vo, T.N.; Kim, D.S.; Mun, Y.S.; Lee, H.J.; Ahn, S.-K.; Kim, I.T. Fast charging sodium-ion batteries based on Te-P-C composites and insights to low-frequency limits of four common equivalent impedance circuits. Chem. Eng. J. 2020, 398, 125703. [Google Scholar] [CrossRef]
- Chen, T.; Wu, J.; Zhang, X.; Han, X.; Liu, S.; Yang, J. Pseudocapacitive contribution in sulfur-doped porous carbon nanosheets enables high-performance sodium-ion storage. Carbon 2024, 227, 119276. [Google Scholar] [CrossRef]
- Bartoli, M.; Piovano, A.; Elia, G.A.; Meligrana, G.; Pedraza, R.; Pianta, N.; Tealdi, C.; Pagot, G.; Negro, E.; Triolo, C.; et al. Pristine and engineered biochar as Na-ion batteries anode material: A comprehensive overview. Renew. Sustain. Energy Rev. 2024, 194, 114304. [Google Scholar] [CrossRef]
Anode Materials | S-BC-HT-500 | S-BC-HT-700 | S-BC-HT-900 | S-BC-500 | BC-500 |
---|---|---|---|---|---|
RSEI (Ω) | 124 | 148 | 238 | 250 | 276 |
Rct (Ω) | 86 | 102 | 191 | 240 | 279 |
Biomass Species | Current Density (mA g−1) | Cycling Number | Specific Capacity (mAh g−1) | The ICE (%) | Retaining Capacity (%) | References |
---|---|---|---|---|---|---|
basswood | 200 | 500 | 242.3 | 59 | 94 | [10] |
waste coffee grounds | 50 | 100 | 220.36 | 65 | 97 | [11] |
Switchgrass | 100 | 100 | 308.4 | 85 | 98 | [12] |
Lotus Seedpod | 50 | 200 | 328.8 | 50 | 90 | [13] |
Prunus armeniaca seeds | 100 | 100 | 210.2 | NA | NA | [14] |
soap-nut seeds | 100 | 100 | 154 | 50 | 69 | [15] |
jackfruit seed | 20 | 100 | 221 | 66 | 98 | [16] |
chitosan | 2000 | 500 | 146 | 50 | 83 | [17] |
kapok | 400 | 500 | 185.7 | 75 | 53 | [19] |
sugarcane bagasse | 500 | 1000 | 225.7 | 43 | NA | [23] |
cow manure | 100 | 1000 | 372.2 | 55 | 70 | [24] |
Spring onion | 5000 | 2000 | 211 | 58 | 94 | [29] |
Durian | 5000 | 4500 | 100.02 | 56 | NA | [30] |
shredded coconut | 5000 | 1000 | 308 | 53 | 90 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, S.; Zhang, C.; Li, G.; Liu, J.; Wang, Y. Shredded-Coconut-Derived Sulfur-Doped Hard Carbon via Hydrothermal Processing for High-Performance Sodium Ion Anodes. Nanomaterials 2025, 15, 734. https://doi.org/10.3390/nano15100734
Liu Y, Chen S, Zhang C, Li G, Liu J, Wang Y. Shredded-Coconut-Derived Sulfur-Doped Hard Carbon via Hydrothermal Processing for High-Performance Sodium Ion Anodes. Nanomaterials. 2025; 15(10):734. https://doi.org/10.3390/nano15100734
Chicago/Turabian StyleLiu, Yuanfeng, Shuai Chen, Chengzhi Zhang, Guochun Li, Junfeng Liu, and Yong Wang. 2025. "Shredded-Coconut-Derived Sulfur-Doped Hard Carbon via Hydrothermal Processing for High-Performance Sodium Ion Anodes" Nanomaterials 15, no. 10: 734. https://doi.org/10.3390/nano15100734
APA StyleLiu, Y., Chen, S., Zhang, C., Li, G., Liu, J., & Wang, Y. (2025). Shredded-Coconut-Derived Sulfur-Doped Hard Carbon via Hydrothermal Processing for High-Performance Sodium Ion Anodes. Nanomaterials, 15(10), 734. https://doi.org/10.3390/nano15100734