Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations
Abstract
:1. Introduction
2. Biological Background
3. Resistive Switching
3.1. Types of Resistive Switching
3.2. Resistive Switching Mechanisms
3.2.1. Ion Migration Based Switching
3.2.2. Trap Assisted Switching
3.2.3. Other Prominent Mechanisms
Switching Mechanism | Device Structure | / | Endurance (Cycles) | Retention (s) | Operating Voltage (V) |
---|---|---|---|---|---|
Electrochemical Metallization (ECM) | Ag/a-ZnO/Pt [63] | >107 | >102 | >106 | <1 |
Valence Change Mechanism (VCM) | Ti/HfO2/TiN [64] | 3 | |||
Trap Assisted Switching | Nb/NbOx/Al2O3/HfO2/Au [65] | >102 | >105 | ||
Ferroelectric Polarization | Ag/PZT/Nb:SrTiO3 [58] | >102 | 1.35–2 | ||
Magnetization Reversal | W/CoFeB/MgO/CoFeB/IrMn [66] | ∼102 | >106 | − | |
Metal Insulator Transition | Pt/Al/PCMO/Pt [67] | >102 | >106 | 3 | |
Ion Intercalation | Ni/LiCoO2/a-Si/Ti [68] | ∼10 | − | ∼104 | 8 |
4. Resistive Switching Materials & Applications
4.1. Inorganic Materials
4.1.1. Oxide Materials
4.1.2. Other Inorganic Materials
4.2. Organic Materials
4.2.1. Polymer Materials
4.2.2. Biomaterials
4.3. Lower Dimensional Materials
5. Emerging Neuromorphic Applications
6. Challenges & Future Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A Comprehensive Review on Emerging Artificial Neuromorphic Devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y.; et al. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef]
- Schmitt, S.; Klähn, J.; Bellec, G.; Grübl, A.; Güttler, M.; Hartel, A.; Hartmann, S.; Husmann, D.; Husmann, K.; Jeltsch, S.; et al. Neuromorphic Hardware in the Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System. In Proceedings of the 2017 International Joint Conference on Neural Networks(IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2227–2234. [Google Scholar] [CrossRef]
- Orchard, G.; Frady, E.P.; Rubin, D.B.D.; Sanborn, S.; Shrestha, S.B.; Sommer, F.T.; Davies, M. Efficient Neuromorphic Signal Processing with Loihi 2. arXiv 2021, arXiv:2111.03746 [cs]. [Google Scholar] [CrossRef]
- Modha, D.S.; Akopyan, F.; Andreopoulos, A.; Appuswamy, R.; Arthur, J.V.; Cassidy, A.S.; Datta, P.; DeBole, M.V.; Esser, S.K.; Otero, C.O.; et al. Neural inference at the frontier of energy, space, and time. Science 2023, 382, 329–335. [Google Scholar] [CrossRef]
- Halter, M.; Bégon-Lours, L.; Bragaglia, V.; Sousa, M.; Offrein, B.J.; Abel, S.; Luisier, M.; Fompeyrine, J. Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights. ACS Appl. Mater. Interfaces 2020, 12, 17725–17732. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Sun, J.; Kong, L.a.; Gou, G.; Yang, J.; He, J.; Gao, Y.; Wan, Q. Artificial Synapses Based on In-Plane Gate Organic Electrochemical Transistors. ACS Appl. Mater. Interfaces 2016, 8, 26169–26175. [Google Scholar] [CrossRef]
- Burr, G.W.; Shelby, R.M.; Sidler, S.; Di Nolfo, C.; Jang, J.; Boybat, I.; Shenoy, R.S.; Narayanan, P.; Virwani, K.; Giacometti, E.U.; et al. Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element. IEEE Trans. Electron Devices 2015, 62, 3498–3507. [Google Scholar] [CrossRef]
- Kent, A.D.; Worledge, D.C. A New Spin on Magnetic Memories. Nat. Nanotechnol. 2015, 10, 187–191. [Google Scholar] [CrossRef]
- Mikolajick, T.; Dehm, C.; Hartner, W.; Kasko, I.; Kastner, M.J.; Nagel, N.; Moert, M.; Mazure, C. FeRAM Technology for High Density Applications. Microelectron. Reliab. 2001, 41, 947–950. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.C.; Kim, S.; Yang, S.Y.; Park, J.; Cha, J.H.; Oh, J.; Choi, J.; Im, S.G.; Dravid, V.P.; Choi, S.Y. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. Nano Lett. 2019, 19, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, B.; Zhu, X.; Wang, J.; Ryu, B.; Lu, W.D.; Lu, W.; Liang, X. MoS2 Memristors Exhibiting Variable Switching Characteristics toward Biorealistic Synaptic Emulation. ACS Nano 2018, 12, 9240–9252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, H.; Tian, M.; Chen, A.; Chen, L.; Pu, D.; Hu, J.; Cao, J.; Li, L.; Xu, X.; et al. Multi-Stimuli-Responsive Synapse Based on Vertical van Der Waals Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 35917–35926. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Meng, J.L.; Rao, M.Y.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Bao, W.Z.; Zhou, P.; et al. Three-Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application. Nano Lett. 2020, 20, 4111–4120. [Google Scholar] [CrossRef]
- Wan, W.; Kubendran, R.; Schaefer, C.; Eryilmaz, S.B.; Zhang, W.; Wu, D.; Deiss, S.; Raina, P.; Qian, H.; Gao, B.; et al. A Compute-in-Memory Chip Based on Resistive Random-Access Memory. Nature 2022, 608, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Wong, H.S.P. In-Memory Computing with Resistive Switching Devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Chen, L.; Pam, M.E.; Li, S.; Ang, K.W. Ferroelectric Memory Based on Two-Dimensional Materials for Neuromorphic Computing. Neuromorphic Comput. Eng. 2022, 2, 022001. [Google Scholar] [CrossRef]
- Xu, W.; Cho, H.; Kim, Y.H.; Kim, Y.T.; Wolf, C.; Park, C.G.; Lee, T.W. Organometal Halide Perovskite Artificial Synapses. Adv. Mater. 2016, 28, 5916–5922. [Google Scholar] [CrossRef]
- Ho, V.M.; Lee, J.A.; Martin, K.C. The Cell Biology of Synaptic Plasticity. Science 2011, 334, 623–628. [Google Scholar] [CrossRef]
- Kuzum, D.; Yu, S.; Philip Wong, H.S. Synaptic Electronics: Materials, Devices and Applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Huang, H.M.; Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Adv. Electron. Mater. 2019, 5, 1900287. [Google Scholar] [CrossRef]
- Song, M.K.; Kang, J.H.; Zhang, X.; Ji, W.; Ascoli, A.; Messaris, I.; Demirkol, A.S.; Dong, B.; Aggarwal, S.; Wan, W.; et al. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems. ACS Nano 2023, 17, 11994–12039. [Google Scholar] [CrossRef]
- Chua, L. Resistance switching memories are memristors. Appl. Phys. A 2011, 102, 765–783. [Google Scholar] [CrossRef]
- Morales-Masis, M.; Van Der Molen, S.J.; Fu, W.T.; Hesselberth, M.B.; Van Ruitenbeek, J.M. Conductance Switching in Ag2S Devices Fabricated by in Situ sulfurization. Nanotechnology 2009, 20, 095710. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of Conducting Filament Growth in Nanoscale Resistive Memories. Nat. Commun. 2012, 3, 732. [Google Scholar] [CrossRef]
- Wang, Z.; Rao, M.; Midya, R.; Joshi, S.; Jiang, H.; Lin, P.; Song, W.; Asapu, S.; Zhuo, Y.; Li, C.; et al. Threshold Switching of Ag or Cu in Dielectrics: Materials, Mechanism, and Applications. Adv. Funct. Mater. 2018, 28, 1704862. [Google Scholar] [CrossRef]
- Valov, I.; Waser, R.; Jameson, J.R.; Kozicki, M.N. Electrochemical Metallization Memories—Fundamentals, Applications, Prospects. Nanotechnology 2011, 22, 289502. [Google Scholar] [CrossRef]
- Rahaman, S.Z.; Maikap, S. Comparison of Resistive Switching Characteristics Using Copper and Aluminum Electrodes on GeOx/W Cross-Point Memories. Nanoscale Res. Lett. 2013, 8, 509. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; et al. Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nat. Nanotechnol. 2010, 5, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Huang, C.W.; Chiu, C.H.; Huang, Y.T.; Wu, W.W. Switching Kinetic of VCM-Based Memristor: Evolution and Positioning of Nanofilament. Adv. Mater. 2015, 27, 5028–5033. [Google Scholar] [CrossRef]
- Gao, Q.; Huang, A.; Hu, Q.; Zhang, X.; Chi, Y.; Li, R.; Ji, Y.; Chen, X.; Zhao, R.; Wang, M.; et al. Stability and Repeatability of a Karst-like Hierarchical Porous Silicon Oxide-Based Memristor. ACS Appl. Mater. Interfaces 2019, 11, 21734–21740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ma, J.; Xiao, X.; Liu, Q.; Shao, L.; Chen, D.; Liu, S.; Niu, J.; Zhang, X.; Wang, Y.; et al. Breaking the Current-Retention Dilemma in Cation-Based Resistive Switching Devices Utilizing Graphene with Controlled Defects. Adv. Mater. 2018, 30, 1705193. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Aono, M. Forming and Switching Mechanisms of a Cation-Migration-Based Oxide Resistive Memory. Nanotechnology 2010, 21, 425205. [Google Scholar] [CrossRef]
- Yoon, J.H.; Zhang, J.; Lin, P.; Upadhyay, N.; Yan, P.; Liu, Y.; Xia, Q.; Yang, J.J. A Low-Current and Analog Memristor with Ru as Mobile Species. Adv. Mater. 2020, 32, 1904599. [Google Scholar] [CrossRef]
- Lübben, M.; Valov, I. Active Electrode Redox Reactions and Device Behavior in ECM Type Resistive Switching Memories. Adv. Electron. Mater. 2019, 5, 1800933. [Google Scholar] [CrossRef]
- Lee, C.X.X.; Dananjaya, P.A.; Chee, M.Y.; Poh, H.Y.; Tan, F.; Thong, J.R.; Liu, L.; Lim, G.J.; Du, Y.; Tan, J.B.; et al. Enhanced Resistive Switching Characteristics of Conductive Bridging Memory Device by a Co–Cu Alloy Electrode. Appl. Phys. Lett. 2023, 123, 133504. [Google Scholar] [CrossRef]
- Choi, Y.J.; Bang, S.; Kim, T.H.; Hong, K.; Kim, S.; Kim, S.; Park, B.G.; Choi, W.Y. Electric-Field-Induced Metal Filament Formation in Cobalt-Based CBRAM Observed by TEM. ACS Appl. Electron. Mater. 2023, 5, 1834–1843. [Google Scholar] [CrossRef]
- Wedig, A.; Luebben, M.; Cho, D.Y.; Moors, M.; Skaja, K.; Rana, V.; Hasegawa, T.; Adepalli, K.K.; Yildiz, B.; Waser, R.; et al. Nanoscale Cation Motion in TaOx, HfOx and TiOx Memristive Systems. Nat. Nanotechnol. 2016, 11, 67–74. [Google Scholar] [CrossRef]
- Joshua Yang, J.; Miao, F.; Pickett, M.D.; Ohlberg, D.A.A.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The Mechanism of Electroforming of Metal Oxide Memristive Switches. Nanotechnology 2009, 20, 215201. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Sun, Y.; Tai, M.; Song, C.; Wang, Z.; Yin, J.; Li, F.; Wu, H.; Zeng, F.; Lin, H.; Pan, F. Competition between Metallic and Vacancy Defect Conductive Filaments in a CH3NH3PbI3-Based Memory Device. J. Phys. Chem. C 2018, 122, 6431–6436. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices. IEEE Trans. Electron Devices 2009, 56, 193–200. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Zhang, H.; Liu, J.; Tan, D.; Chen, L.; Ma, Z.; Li, W. Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation. Nanoscale Res. Lett. 2020, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kim, M.; Rehman, M.A.; Chabungbam, A.S.; Kim, D.e.; Lee, H.S.; Kymissis, I.; Park, H.H. Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer. ACS Appl. Mater. Interfaces 2022, 14, 17682–17690. [Google Scholar] [CrossRef]
- Kaniselvan, M.; Luisier, M.; Mladenović, M. An Atomistic Model of Field-Induced Resistive Switching in Valence Change Memory. ACS Nano 2023, 17, 8281–8292. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kim, K.M.; Song, S.J.; Seok, J.Y.; Yoon, K.J.; Kwon, D.E.; Park, T.H.; Kwon, Y.J.; Shao, X.; Hwang, C.S. Pt/Ta2O5/HfO2-x/Ti Resistive Switching Memory Competing with Multilevel NAND Flash. Adv. Mater. 2015, 27, 3811–3816. [Google Scholar] [CrossRef]
- Cheng, X.F.; Shi, E.B.; Hou, X.; Shu, J.; He, J.H.; Li, H.; Xu, Q.F.; Li, N.J.; Chen, D.Y.; Lu, J.M. 1D Π-d Conjugated Coordination Polymers for Multilevel Memory of Long-Term and High-Temperature Stability. Adv. Electron. Mater. 2017, 3, 1700107. [Google Scholar] [CrossRef]
- Seo, S.; Jo, S.H.; Kim, S.; Shim, J.; Oh, S.; Kim, J.H.; Heo, K.; Choi, J.W.; Choi, C.; Oh, S.; et al. Artificial Optic-Neural Synapse for Colored and Color-Mixed Pattern Recognition. Nat. Commun. 2018, 9, 5106. [Google Scholar] [CrossRef]
- Choi, H.Y.; Wu, C.; Bok, C.H.; Kim, T.W. Organic Electronic Synapses with Pinched Hystereses Based on Graphene Quantum-Dot Nanocomposites. NPG Asia Mater. 2017, 9, e413. [Google Scholar] [CrossRef]
- Koduvayur Ganeshan, S.; Selamneni, V.; Sahatiya, P. Water Dissolvable MoS2 Quantum Dots/PVA Film as an Active Material for Destructible Memristors. New J. Chem. 2020, 44, 11941–11948. [Google Scholar] [CrossRef]
- Garcia, V.; Bibes, M. Ferroelectric Tunnel Junctions for Information Storage and Processing. Nat. Commun. 2014, 5, 4289. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.D.; Peters, J.J.P.; Sanchez, A.M.; Alexe, M. Flexible Memristors Based on Single-Crystalline Ferroelectric Tunnel Junctions. ACS Appl. Mater. Interfaces 2019, 11, 23313–23319. [Google Scholar] [CrossRef]
- Bagdzevicius, S.; Maas, K.; Boudard, M.; Burriel, M. Interface-Type Resistive Switching in Perovskite Materials. J. Electroceram 2017, 39, 157–184. [Google Scholar] [CrossRef]
- Chanthbouala, A.; Garcia, V.; Cherifi, R.O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N.D.; et al. A Ferroelectric Memristor. Nat. Mater. 2012, 11, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jin, K.j.; Xu, Z.t.; Wang, L.; Ge, C.; Lu, H.b.; Guo, H.z.; He, M.; Yang, G.z. Switchable Diode Effect and Ferroelectric Resistive Switching in Epitaxial BiFeO3 Thin Films. Appl. Phys. Lett. 2011, 98, 192901. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Z.; Guan, Z.; Ma, C.; Zhao, L.; Liu, C.; Sun, H.; Wang, H.; Lin, Y.; Jin, X.; et al. High-Precision and Linear Weight Updates by Subnanosecond Pulses in Ferroelectric Tunnel Junction for Neuro-Inspired Computing. Nat. Commun. 2022, 13, 699. [Google Scholar] [CrossRef]
- Fukami, S.; Ohno, H. Perspective: Spintronic Synapse for Artificial Neural Network. J. Appl. Phys. 2018, 124, 151904. [Google Scholar] [CrossRef]
- Grollier, J.; Cros, V.; Hamzic, A.; George, J.M.; Jaffrès, H.; Fert, A.; Faini, G.; Ben Youssef, J.; Legall, H. Spin-Polarized Current Induced Switching in Co/Cu/Co Pillars. Appl. Phys. Lett. 2001, 78, 3663–3665. [Google Scholar] [CrossRef]
- Krzysteczko, P.; Münchenberger, J.; Schäfers, M.; Reiss, G.; Thomas, A. The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse-Neuron System. Adv. Mater. 2012, 24, 762–766. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, W.; Wang, M.; Pan, B.; Cao, K.; Guo, M.; Zhang, T.; Cheng, H.; Li, S.; Zhu, D.; et al. Spin-Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. Adv. Sci. 2021, 8, 2004645. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Z.; Wu, Y.; Wang, X.; Zhang, S.; Shi, X.; Zeng, H. Amorphous ZnO Based Resistive Random Access Memory. RSC Adv. 2016, 6, 17867–17872. [Google Scholar] [CrossRef]
- Chand, U.; Huang, C.Y.; Jieng, J.H.; Jang, W.Y.; Lin, C.H.; Tseng, T.Y. Suppression of Endurance Degradation by Utilizing Oxygen Plasma Treatment in HfO2 Resistive Switching Memory. Appl. Phys. Lett. 2015, 106, 153502. [Google Scholar] [CrossRef]
- Zahari, F.; Marquardt, R.; Kalläne, M.; Gronenberg, O.; Schlueter, C.; Matveyev, Y.; Haberfehlner, G.; Diekmann, F.; Nierhauve, A.; Buck, J.; et al. Trap-Assisted Memristive Switching in HfO2-Based Devices Studied by In Situ Soft and Hard X-Ray Photoelectron Spectroscopy. Adv. Electron. Mater. 2023, 9, 2201226. [Google Scholar] [CrossRef]
- Shiokawa, Y.; Komura, E.; Ishitani, Y.; Tsumita, A.; Suda, K.; Kakinuma, Y.; Sasaki, T. High Write Endurance up to 1012 Cycles in a Spin Current-Type Magnetic Memory Array. AIP Adv. 2019, 9, 035236. [Google Scholar] [CrossRef]
- Seong, D.j.; Park, J.; Lee, N.; Hasan, M.; Jung, S.; Choi, H.; Lee, J.; Jo, M.; Lee, W.; Park, S.; et al. Effect of Oxygen Migration and Interface Engineering on Resistance Switching Behavior of Reactive Metal/Polycrystalline Pr0.7Ca0.3MnO3 Device for Nonvolatile Memory Applications. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.; Kim, M.; Woo, J.; Koo, S.M.; Oh, J.M.; Lee, D. Two-Terminal Structured Synaptic Device Using Ionic Electrochemical Reaction Mechanism for Neuromorphic System. IEEE Electron Device Lett. 2019, 40, 546–549. [Google Scholar] [CrossRef]
- Wei, Y.; Matzen, S.; Maroutian, T.; Agnus, G.; Salverda, M.; Nukala, P.; Chen, Q.; Ye, J.; Lecoeur, P.; Noheda, B. Magnetic Tunnel Junctions Based on Ferroelectric Hf0.5Zr0.5O2 Tunnel Barriers. Phys. Rev. Applied 2019, 12, 031001. [Google Scholar] [CrossRef]
- Torrejon, J.; Riou, M.; Araujo, F.A.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bortolotti, P.; Cros, V.; Yakushiji, K.; Fukushima, A.; et al. Neuromorphic Computing with Nanoscale Spintronic Oscillators. Nature 2017, 547, 428–431. [Google Scholar] [CrossRef]
- Yue, K.; Liu, Y.; Lake, R.K.; Parker, A.C. A Brain-Plausible Neuromorphic on-the-Fly Learning System Implemented with Magnetic Domain Wall Analog Memristors. Sci. Adv. 2019, 5, eaau8170. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Shen, M.; Zeng, Z.; Liang, S.; Liu, Y.; Chen, M.; Zhang, Z.; Lu, Z.; You, L.; Yang, X.; et al. Voltage-Controlled Skyrmion-Based Nanodevices for Neuromorphic Computing Using a Synthetic Antiferromagnet. Nanoscale Adv. 2020, 2, 1309–1317. [Google Scholar] [CrossRef]
- Del Valle, J.; Salev, P.; Tesler, F.; Vargas, N.M.; Kalcheim, Y.; Wang, P.; Trastoy, J.; Lee, M.H.; Kassabian, G.; Ramírez, J.G.; et al. Subthreshold firing in Mott nanodevices. Nature 2019, 569, 388–392. [Google Scholar] [CrossRef]
- Kumar, S.; Strachan, J.P.; Williams, R.S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 2017, 548, 318–321. [Google Scholar] [CrossRef]
- Ran, Y.; Pei, Y.; Zhou, Z.; Wang, H.; Sun, Y.; Wang, Z.; Hao, M.; Zhao, J.; Chen, J.; Yan, X. A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing. Nano Res. 2023, 16, 1165–1182. [Google Scholar] [CrossRef]
- Zhang, X.; Zhuo, Y.; Luo, Q.; Wu, Z.; Midya, R.; Wang, Z.; Song, W.; Wang, R.; Upadhyay, N.K.; Fang, Y.; et al. An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 2020, 11, 51. [Google Scholar] [CrossRef]
- Fuller, E.J.; Gabaly, F.E.; Léonard, F.; Agarwal, S.; Plimpton, S.J.; Jacobs-Gedrim, R.B.; James, C.D.; Marinella, M.J.; Talin, A.A. Li-Ion Synaptic Transistor for Low Power Analog Computing. Adv. Mater. 2017, 29, 1604310. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Chai, Y.S.; Yan, L.Q.; Shen, B.G.; Sun, Y. Electrochemical-Reaction-Induced Synaptic Plasticity in MoOx-Based Solid State Electrochemical Cells. Phys. Chem. Chem. Phys. 2017, 19, 4190–4198. [Google Scholar] [CrossRef]
- Yao, X.; Klyukin, K.; Lu, W.; Onen, M.; Ryu, S.; Kim, D.; Emond, N.; Waluyo, I.; Hunt, A.; Del Alamo, J.A.; et al. Protonic Solid-State Electrochemical Synapse for Physical Neural Networks. Nat. Commun. 2020, 11, 3134. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Mohanan, K.U.; Sagar, S.; Das, B.C. Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing. Adv. Funct. Mater. 2023, 34, 2304228. [Google Scholar] [CrossRef]
- Hickmott, T.W. Low-Frequency Negative Resistance in Thin Anodic Oxide Films. J. Appl. Phys. 1962, 33, 2669–2682. [Google Scholar] [CrossRef]
- Cavallini, M.; Hemmatian, Z.; Riminucci, A.; Prezioso, M.; Morandi, V.; Murgia, M. Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions. Adv. Mater. 2012, 24, 1197–1201. [Google Scholar] [CrossRef]
- Yu, S.; Wu, Y.; Jeyasingh, R.; Kuzum, D.; Wong, H.S.P. An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation. IEEE Trans. Electron Devices 2011, 58, 2729–2737. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, S.; Song, L.; Ji, X.; Zhao, R. Emulating Dynamic Synaptic Plasticity over Broad Timescales with Memristive Device. Appl. Phys. Lett. 2018, 113, 203102. [Google Scholar] [CrossRef]
- Rao, M.; Tang, H.; Wu, J.; Song, W.; Zhang, M.; Yin, W.; Zhuo, Y.; Kiani, F.; Chen, B.; Jiang, X.; et al. Thousands of Conductance Levels in Memristors Integrated on CMOS. Nature 2023, 615, 823–829. [Google Scholar] [CrossRef]
- Kim, S.; Du, C.; Sheridan, P.; Ma, W.; Choi, S.; Lu, W.D. Experimental Demonstration of a Second-Order Memristor and Its Ability to Biorealistically Implement Synaptic Plasticity. Nano Lett. 2015, 15, 2203–2211. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Duan, Q.; Tiw, P.J.; Li, G.; Xiao, Z.; Jing, Z.; Yang, K.; Liu, C.; Ge, C.; Huang, R.; et al. A Calibratable Sensory Neuron Based on Epitaxial VO2 for Spike-Based Neuromorphic Multisensory System. Nat. Commun. 2022, 13, 3973. [Google Scholar] [CrossRef]
- Tan, Z.H.; Yang, R.; Terabe, K.; Yin, X.B.; Zhang, X.D.; Guo, X. Synaptic Metaplasticity Realized in Oxide Memristive Devices. Adv. Mater. 2016, 28, 377–384. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.H.; Chang, Y.F.; Park, B.G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Woo, J.; Lee, T.; Park, S.M.; Lee, T.; Lee, W.H.; Nahm, S. Synaptic Plasticity and Preliminary-Spike-Enhanced Plasticity in a CMOS-compatible Ta2O5 Memristor. Mater. Des. 2020, 187, 108400. [Google Scholar] [CrossRef]
- Nagata, Z.; Shimizu, T.; Isaka, T.; Tohei, T.; Ikarashi, N.; Sakai, A. Gate Tuning of Synaptic Functions Based on Oxygen Vacancy Distribution Control in Four-Terminal TiO2-x Memristive Devices. Sci. Rep. 2019, 9, 10013. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Jeon, Y.R.; Ku, B.; Choi, C. Ar Ion Plasma Surface Modification on the Heterostructured TaOx/InGaZnO Thin Films for Flexible Memristor Synapse. J. Alloys Compd. 2020, 822, 153625. [Google Scholar] [CrossRef]
- Jang, J.T.; Ko, D.; Ahn, G.; Yu, H.R.; Jung, H.; Kim, Y.S.; Yoon, C.; Lee, S.; Park, B.H.; Choi, S.J.; et al. Effect of Oxygen Content of the LaAlO3 Layer on the Synaptic Behavior of Pt/LaAlO3/Nb-doped SrTiO3 Memristors for Neuromorphic Applications. Solid State Electron. 2018, 140, 139–143. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Z.; Zhao, L.; Liu, C.; Ma, C.; Lin, Y.; Gao, G.; Chen, Z.; Bao, Z.; Jin, X.; et al. BiFeO3-Based Flexible Ferroelectric Memristors for Neuromorphic Pattern Recognition. ACS Appl. Electron. Mater. 2020, 2, 1081–1089. [Google Scholar] [CrossRef]
- Dai, Y.; Schubert, J.; Trellenkamp, S.; Mussler, G.; Wördenweber, R. Synaptic-like Conductivity and Plasticity in Epitaxially Strained SrTiO3 Films. J. Appl. Phys. 2019, 125, 245106. [Google Scholar] [CrossRef]
- Lee, T.H.; Hwang, H.G.; Woo, J.U.; Kim, D.H.; Kim, T.W.; Nahm, S. Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO3 Memristor for Application to Artificial Synapse. ACS Appl. Mater. Interfaces 2018, 10, 25673–25682. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I.K.; Hwang, H. HfZrOx -Based Ferroelectric Synapse Device with 32 Levels of Conductance States for Neuromorphic Applications. IEEE Electron Device Lett. 2017, 38, 732–735. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with Diffusive Dynamics as Synaptic Emulators for Neuromorphic Computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Fu, S.; Chen, Y.; Cao, H.; Liang, L.; Zhang, H.; Gao, J.; Wang, J.; Zhuge, F. Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films. Adv. Mater. 2017, 29, 1606927. [Google Scholar] [CrossRef]
- Chen, M.; Lv, Y.; Guo, X.; Peng, X.; Xi, J.; Fu, L.; Zhao, S. Investigation of Resistive Switching Behaviors of Cuprous Phosphide Thick Film. J. Alloys Compd. 2024, 970, 172641. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Chang, H.; Lyu, X.; Jing, X.; Yang, W.; Xie, H.; Crittenden, J. High-Performance Memristors Based on Bi2Te3. J. Electron. Mater. 2023, 52, 1242–1249. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Xu, L.; Zhang, J.; Xu, X.; Sun, H.; Miao, X. Ultrafast Synaptic Events in a Chalcogenide Memristor. Sci. Rep. 2013, 3, 1619. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, W.; Zhang, C.; Peng, Y.; Guo, Y. An Electronic Synapse Device Based on Aluminum Nitride Memristor for Neuromorphic Computing Application. J. Phys. D Appl. Phys. 2020, 53, 195101. [Google Scholar] [CrossRef]
- Cho, H.; Kim, S. Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory. Nanomaterials 2020, 10, 1709. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, H.; Liu, S.; Song, B.; Liu, H.; Liu, Q.; Li, Q. Short-Term and Long-Term Plasticity Mimicked in Low-Voltage Ag/GeSe/TiN Electronic Synapse. IEEE Electron Device Lett. 2018, 39, 492–495. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Zhang, J.; Xu, L.; Wang, Q.; Sun, H.; Tong, H.; Cheng, X.; Miao, X. Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems. Sci. Rep. 2014, 4, 4906. [Google Scholar] [CrossRef] [PubMed]
- Wlaźlak, E.; Marzec, M.; Zawal, P.; Szaciłowski, K. Memristor in a Reservoir System—Experimental Evidence for High-Level Computing and Neuromorphic Behavior of PbI2. ACS Appl. Mater. Interfaces 2019, 11, 17009–17018. [Google Scholar] [CrossRef]
- Chen, D.; Zhi, X.; Xia, Y.; Li, S.; Xi, B.; Zhao, C.; Wang, X. A Digital-Analog Bimodal Memristor Based on CsPbBr3 for Tactile Sensory Neuromorphic Computing. Small 2023, 19, 2301196. [Google Scholar] [CrossRef]
- Katz, H.E.; Lovinger, A.J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.Y.; Dodabalapur, A. A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478–481. [Google Scholar] [CrossRef]
- Scrosati, B. Progress in lithium polymer battery R&D. J. Power Sources 2001, 100, 93–100. [Google Scholar] [CrossRef]
- Kannan, U.M.; Muddisetti, V.N.; Kotnana, G.; Kandhadi, J.; Giribabu, L.; Singh, S.P.; Jammalamadaka, S.N. Spin–orbit coupling and Lorentz force enhanced efficiency of TiO2 -based dye sensitized solar cells. Phys. Status Solidi (A) Appl. Mater. Sci. 2017, 214, 1600691. [Google Scholar] [CrossRef]
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Valov, I.; Kozicki, M. Organic Memristors Come of Age. Nat. Mater. 2017, 16, 1170–1172. [Google Scholar] [CrossRef]
- Li, S.; Zeng, F.; Chen, C.; Liu, H.; Tang, G.; Gao, S.; Song, C.; Lin, Y.; Pan, F.; Guo, D. Synaptic Plasticity and Learning Behaviours Mimicked through Ag Interface Movement in an Ag/Conducting Polymer/Ta Memristive System. J. Mater. Chem. C 2013, 1, 5292. [Google Scholar] [CrossRef]
- Van De Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A Non-Volatile Organic Electrochemical Device as a Low-Voltage Artificial Synapse for Neuromorphic Computing. Nat. Mater. 2017, 16, 414–418. [Google Scholar] [CrossRef]
- Yu, T.F.; Chen, H.Y.; Liao, M.Y.; Tien, H.C.; Chang, T.T.; Chueh, C.C.; Lee, W.Y. Solution-Processable Anion-doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Appl. Mater. Interfaces 2020, 12, 33968–33978. [Google Scholar] [CrossRef]
- McFarlane, T.; Bandera, Y.; Grant, B.; Zdyrko, B.; Foulger, S.H.; Vilčáková, J.; Sáha, P.; Pfleger, J. Carbazole Derivatized n-Alkyl Methacrylate Polymeric Memristors as Flexible Synaptic Substitutes. Adv. Electron. Mater. 2020, 6, 2000042. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Tian, B.; Luo, C.; Zhong, N.; Wang, J.; Meng, X.; Peng, H.; Duan, C.G.; Chu, J. Efficient Two-Terminal Artificial Synapse Based on a Network of Functionalized Conducting Polymer Nanowires. J. Mater. Chem. C 2019, 7, 9933–9938. [Google Scholar] [CrossRef]
- Minnekhanov, A.A.; Emelyanov, A.V.; Lapkin, D.A.; Nikiruy, K.E.; Shvetsov, B.S.; Nesmelov, A.A.; Rylkov, V.V.; Demin, V.A.; Erokhin, V.V. Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications. Sci. Rep. 2019, 9, 10800. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Kim, Y.; Baek, H.; Cho, J. Electrically Bistable Properties of Layer-by-Layer Assembled Multilayers Based on Protein Nanoparticles. ACS Nano 2011, 5, 9918–9926. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hu, W.; Zeng, F.; Zhang, C.; Peng, Y.; Guo, Y. Ultrafast Degradable Resistive Switching Memory Based on α-Lactose Thin Films. Org. Electron. 2020, 83, 105750. [Google Scholar] [CrossRef]
- Lam, J.Y.; Jang, G.W.; Huang, C.J.; Tung, S.H.; Chen, W.C. Environmentally Friendly Resistive Switching Memory Devices with DNA as the Active Layer and Bio-Based Polyethylene Furanoate as the Substrate. ACS Sustain. Chem. Eng. 2020, 8, 5100–5106. [Google Scholar] [CrossRef]
- Lee, T.; Yagati, A.K.; Pi, F.; Sharma, A.; Choi, J.W.; Guo, P. Construction of RNA–Quantum Dot Chimera for Nanoscale Resistive Biomemory Application. ACS Nano 2015, 9, 6675–6682. [Google Scholar] [CrossRef]
- Tseng, R.J.; Tsai, C.; Ma, L.; Ouyang, J.; Ozkan, C.S.; Yang, Y. Digital Memory Device Based on Tobacco Mosaic Virus Conjugated with Nanoparticles. Nat. Nanotechnol. 2006, 1, 72–77. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, J.; Wan, X.; Yang, Y.; Jiang, S. Chitosan-Based Biopolysaccharide Proton Conductors for Synaptic Transistors on Paper Substrates. J. Mater. Chem. C 2014, 2, 6249–6255. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Xiao, H.; Gao, W.T.; Guo, Y.B. Restickable Oxide Neuromorphic Transistors with Spike-Timing-Dependent Plasticity and Pavlovian Associative Learning Activities. Adv. Funct. Mater. 2018, 28, 1804025. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.S. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials. ACS Nano 2017, 11, 8962–8969. [Google Scholar] [CrossRef]
- Wu, G.; Feng, P.; Wan, X.; Zhu, L.; Shi, Y.; Wan, Q. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 2016, 6, 23578. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, L.; Chen, H.; Li, X.; Wang, J.; Liu, Q.; Lu, C.; Chen, J.; Wu, H.; Zhou, P. Graphene Oxide Quantum Dots Based Memristors with Progressive Conduction Tuning for Artificial Synaptic Learning. Adv. Funct. Mater. 2018, 28, 1803728. [Google Scholar] [CrossRef]
- Hong, D.S.; Chen, Y.S.; Sun, J.R.; Shen, B.G. Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowires. Adv. Electron. Mater. 2016, 2, 1500359. [Google Scholar] [CrossRef]
- Roy, S.; Tripathy, N.; Pradhan, D.; Sahu, P.K.; Kar, J.P. Fabrication and Characterization of TiO2 Thin Film–Nanorod-Based Hybrid Structures for Memristor Applications. J. Electron. Mater. 2024, 53, 347–355. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.H.; Qian, C.; Kang, J.; Hersam, M.C.; Park, J.H.; Cho, J.H. Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. ACS Appl. Mater. Interfaces 2020, 12, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhou, B.; Wang, F.; Wan, Q.; Shan, X.; Li, C.; Lin, X.; Zhang, K. Low Consumption Two-Terminal Artificial Synapse Based on Transfer-Free Single-Crystal MoS2 Memristor. Nanotechnology 2020, 31, 265202. [Google Scholar] [CrossRef]
- Salonikidou, B.; Yasunori, T.; Le Borgne, B.; England, J.; Shizuo, T.; Sporea, R.A. Toward Fully Printed Memristive Elements: a-TiO2 Electronic Synapse from Functionalized Nanoparticle Ink. ACS Appl. Electron. Mater. 2019, 1, 2692–2700. [Google Scholar] [CrossRef]
- Ishibe, T.; Maeda, Y.; Terada, T.; Naruse, N.; Mera, Y.; Kobayashi, E.; Nakamura, Y. Resistive Switching Memory Performance in Oxide Hetero-Nanocrystals with Well-Controlled Interfaces. Sci. Technol. Adv. Mater. 2020, 21, 195–204. [Google Scholar] [CrossRef]
- Zhang, S.R.; Zhou, L.; Mao, J.Y.; Ren, Y.; Yang, J.Q.; Yang, G.H.; Zhu, X.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device. Adv. Mater. Technol. 2019, 4, 1800342. [Google Scholar] [CrossRef]
- Ma, F.; Xu, Z.; Liu, Y.; Zheng, Y.; Chen, W.; Hu, H.; Guo, T.; Li, F.; Wu, C.; Kim, T.W. Highly Reliable Electronic Synapse Based on Au@Al2O3 Core-Shell Nanoparticles for Neuromorphic Applications. IEEE Electron Device Lett. 2019, 40, 1610–1613. [Google Scholar] [CrossRef]
- Yan, X.; Pei, Y.; Chen, H.; Zhao, J.; Zhou, Z.; Wang, H.; Zhang, L.; Wang, J.; Li, X.; Qin, C.; et al. Self-Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors. Adv. Mater. 2019, 31, 1805284. [Google Scholar] [CrossRef]
- Thomas, A.; Resmi, A.N.; Ganguly, A.; Jinesh, K.B. Programmable Electronic Synapse and Nonvolatile Resistive Switches Using MoS2 Quantum Dots. Sci. Rep. 2020, 10, 12450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Xiao, M.; Zhou, Y.N. Synaptic Learning Behavior of a TiO 2 Nanowire Memristor. Nanotechnology 2019, 30, 425202. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J.S.; Park, B.H. Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire. Nano Lett. 2010, 10, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Yeow, T.; Nguyen, V.H.; Muñoz-Rojas, D.; Musselman, K.P.; Duley, W.W.; Zhou, Y.N. Ultrathin TiOx Interface-Mediated ZnO-Nanowire Memristive Devices Emulating Synaptic Behaviors. Adv. Electron. Mater. 2019, 5, 1900142. [Google Scholar] [CrossRef]
- Wan, H.; Cao, Y.; Lo, L.W.; Zhao, J.; Sepúlveda, N.; Wang, C. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS Nano 2020, 14, 10402–10412. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.S.P.; et al. Electronic Synapses Made of Layered Two-Dimensional Materials. Nat. Electron. 2018, 1, 458–465. [Google Scholar] [CrossRef]
- Sattari-Esfahlan, S.M.; Bonnassieux, Y.; Kymissis, I.; Kim, C.H. Biomass-Derived Nanoporous Graphene Memory Cell. Adv. Mater. Interfaces 2022, 9, 2200084. [Google Scholar] [CrossRef]
- Tian, H.; Mi, W.; Wang, X.F.; Zhao, H.; Xie, Q.Y.; Li, C.; Li, Y.X.; Yang, Y.; Ren, T.L. Graphene Dynamic Synapse with Modulatable Plasticity. Nano Lett. 2015, 15, 8013–8019. [Google Scholar] [CrossRef] [PubMed]
- Dev, D.; Krishnaprasad, A.; Shawkat, M.S.; He, Z.; Das, S.; Fan, D.; Chung, H.S.; Jung, Y.; Roy, T. 2D MoS2-Based Threshold Switching Memristor for Artificial Neuron. IEEE Electron Device Lett. 2020, 41, 936–939. [Google Scholar] [CrossRef]
- Mohanan, K.U.; Sattari-Esfahlan, S.M.; Cho, E.S.; Kim, C.H. Optimization of Leaky Integrate-and-Fire Neuron Circuits Based on Nanoporous Graphene Memristors. IEEE J. Electron Devices Soc. 2024, 12, 88–95. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Xu, R.; Jang, H.; Lee, M.H.; Amanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H.j.; Ham, D. Vertical MoS2 Double-Layer Memristor with Electrochemical Metallization as an Atomic-Scale Synapse with Switching Thresholds Approaching 100mV. Nano Lett. 2019, 19, 2411–2417. [Google Scholar] [CrossRef]
- Kalita, H.; Krishnaprasad, A.; Choudhary, N.; Das, S.; Dev, D.; Ding, Y.; Tetard, L.; Chung, H.S.; Jung, Y.; Roy, T. Artificial Neuron Using Vertical MoS2/Graphene Threshold Switching Memristors. Sci. Rep. 2019, 9, 53. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W.; et al. RRAM-based Synapse for Neuromorphic System with Pattern Recognition Function. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 10.2.1–10.2.4. [Google Scholar] [CrossRef]
- Pei, Y.; Zhou, Z.; Chen, A.P.; Chen, J.; Yan, X. A Carbon-Based Memristor Design for Associative Learning Activities and Neuromorphic Computing. Nanoscale 2020, 12, 13531–13539. [Google Scholar] [CrossRef]
- Udaya Mohanan, K.; Cho, S.; Park, B.G. Medium-Temperature-Oxidized GeOx Resistive-Switching Random-Access Memory and Its Applicability in Processing-in-Memory Computing. Nanoscale Res. Lett. 2022, 17, 63. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhao, Y.; Wang, S.; Zhang, W.; He, Y.; Lin, N.; Cui, B.; Chen, X.; Zhang, S.; et al. Pruning Random Resistive Memory for Optimizing Analogue AI. arxiv 2023, arXiv:arxiv:2311.07164 [cs.ET]. [Google Scholar] [CrossRef]
- Lin, P.; Li, C.; Wang, Z.; Li, Y.; Jiang, H.; Song, W.; Rao, M.; Zhuo, Y.; Upadhyay, N.K.; Barnell, M.; et al. Three-Dimensional Memristor Circuits as Complex Neural Networks. Nat. Electron. 2020, 3, 225–232. [Google Scholar] [CrossRef]
- Jang, Y.H.; Lee, S.H.; Han, J.; Kim, W.; Shim, S.K.; Cheong, S.; Woo, K.S.; Han, J.K.; Hwang, C.S. Spatiotemporal Data Processing with Memristor Crossbar-Array-Based Graph Reservoir. Adv. Mater. 2023, 36, 2309314. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic Memristor-Based Reservoir Computing for High-Efficiency Temporal Signal Processing. Nat. Commun. 2021, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Park, S.O.; Jeong, H.; Park, J.; Bae, J.; Choi, S. Experimental Demonstration of Highly Reliable Dynamic Memristor for Artificial Neuron and Neuromorphic Computing. Nat. Commun. 2022, 13, 2888. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Abunahla, H.; Mohammad, B.; AlKhzaimi, H. Memristor-Based PUF for Lightweight Cryptographic Randomness. Sci. Rep. 2022, 12, 8633. [Google Scholar] [CrossRef]
- Han, C.Y.; Fang, S.L.; Cui, Y.L.; Liu, W.; Fan, S.Q.; Huang, X.D.; Li, X.; Wang, X.L.; Zhang, G.H.; Tang, W.M.; et al. Configurable NbOx Memristors as Artificial Synapses or Neurons Achieved by Regulating the Forming Compliance Current for the Spiking Neural Network. Adv. Electron. Mater. 2023, 9, 2300018. [Google Scholar] [CrossRef]
- Jena, A.K.; Sahu, M.C.; Mohanan, K.U.; Mallik, S.K.; Sahoo, S.; Pradhan, G.K.; Sahoo, S. Bipolar Resistive Switching in TiO2 Artificial Synapse Mimicking Pavlov’s Associative Learning. ACS Appl. Mater. Interfaces 2023, 15, 3574–3585. [Google Scholar] [CrossRef]
- Jetty, P.; Kannan, U.M.; Jammalamadaka, S.N. Emulation of Pavlovian Conditioning and Pattern Recognition through Fully Connected Neural Networks Using Holmium Oxide (Ho2O3) Based Synaptic RRAM Device. Nanotechnology 2023, 35, 075701. [Google Scholar] [CrossRef]
- Jetty, P.; Mohanan, K.U.; Jammalamadaka, S.N. α-Fe2O3 -Based Artificial Synaptic RRAM Device for Pattern Recognition Using Artificial Neural Networks. Nanotechnology 2023, 34, 265703. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Zhao, R.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Tang, B.; Lu, C.; Lou, J.; et al. A Pure 2H-MoS2 Nanosheet-Based Memristor with Low Power Consumption and Linear Multilevel Storage for Artificial Synapse Emulator. Adv. Electron. Mater. 2020, 6, 1901342. [Google Scholar] [CrossRef]
- Sheridan, P.M.; Cai, F.; Du, C.; Ma, W.; Zhang, Z.; Lu, W.D. Sparse Coding with Memristor Networks. Nat. Nanotechnol. 2017, 12, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.H.; Wu, S.; Zhao, R.; Lee, J.H.; Jeong, H.; Shi, L. Spontaneous Sparse Learning for PCM-based Memristor Neural Networks. Nat. Commun. 2021, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and Operation of an Integrated Neuromorphic Network Based on Metal-Oxide Memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Huo, Q.; Yang, Y.; Wang, Y.; Lei, D.; Fu, X.; Ren, Q.; Xu, X.; Luo, Q.; Xing, G.; Chen, C.; et al. A Computing-in-Memory Macro Based on Three-Dimensional Resistive Random-Access Memory. Nat. Electron. 2022, 5, 469–477. [Google Scholar] [CrossRef]
- Le Gallo, M.; Khaddam-Aljameh, R.; Stanisavljevic, M.; Vasilopoulos, A.; Kersting, B.; Dazzi, M.; Karunaratne, G.; Brändli, M.; Singh, A.; Müller, S.M.; et al. A 64-Core Mixed-Signal in-Memory Compute Chip Based on Phase-Change Memory for Deep Neural Network Inference. Nat. Electron. 2023, 6, 680–693. [Google Scholar] [CrossRef]
- Pedretti, G.; Ambrosi, E.; Ielmini, D. Conductance Variations and Their Impact on the Precision of In-Memory Computing with Resistive Switching Memory (RRAM). In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Leng, Y.B.; Zhang, Y.Q.; Lv, Z.; Wang, J.; Xie, T.; Zhu, S.; Qin, J.; Xu, R.; Zhou, Y.; Han, S.T. Recent Progress in Multiterminal Memristors for Neuromorphic Applications. Adv. Electron. Mater. 2023, 9, 2300108. [Google Scholar] [CrossRef]
- Xie, M.; Jia, Y.; Nie, C.; Liu, Z.; Tang, A.; Fan, S.; Liang, X.; Jiang, L.; He, Z.; Yang, R. Monolithic 3D Integration of 2D Transistors and Vertical RRAMs in 1T–4R Structure for High-Density Memory. Nat. Commun. 2023, 14, 5952. [Google Scholar] [CrossRef]
- Niu, G.; Calka, P.; Auf der Maur, M.; Santoni, F.; Guha, S.; Fraschke, M.; Hamoumou, P.; Gautier, B.; Perez, E.; Walczyk, C.; et al. Geometric Conductive Filament Confinement by Nanotips for Resistive Switching of HfO2-RRAM Devices with High Performance. Sci. Rep. 2016, 6, 25757. [Google Scholar] [CrossRef]
- Chaudhary, M.; Yang, T.Y.; Chen, C.T.; Lai, P.C.; Hsu, Y.C.; Peng, Y.R.; Kumar, A.; Lee, C.H.; Chueh, Y.L. Emulating Neuromorphic and In-Memory Computing Utilizing Defect Engineering in 2D-Layered WSeOx and WSe2 Thin Films by Plasma-Assisted Selenization Process. Adv. Funct. Mater. 2023, 33, 2303697. [Google Scholar] [CrossRef]
- Sahu, D.P.; Park, K.; Chung, P.H.; Han, J.; Yoon, T.S. Linear and Symmetric Synaptic Weight Update Characteristics by Controlling Filament Geometry in Oxide/Suboxide HfOx Bilayer Memristive Device for Neuromorphic Computing. Sci. Rep. 2023, 13, 9592. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Noh, K.; Ji, W.; Gokmen, T.; Kim, S. Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm. Front. Neurosci. 2022, 15, 767953. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Gao, B.; Tang, J.; Qian, H.; Wu, H. Emerging Memory-Based Chip Development for Neuromorphic Computing: Status, Challenges, and Perspectives. IEEE Electron Devices Mag. 2023, 1, 33–49. [Google Scholar] [CrossRef]
- Udaya Mohanan, K.; Cho, S.; Park, B.G. Optimization of the structural complexity of artificial neural network for hardware-driven neuromorphic computing application. Appl. Intell. 2023, 53, 6288–6306. [Google Scholar] [CrossRef]
- Mackin, C.; Rasch, M.J.; Chen, A.; Timcheck, J.; Bruce, R.L.; Li, N.; Narayanan, P.; Ambrogio, S.; Le Gallo, M.; Nandakumar, S.R.; et al. Optimised Weight Programming for Analogue Memory-Based Deep Neural Networks. Nat. Commun. 2022, 13, 3765. [Google Scholar] [CrossRef] [PubMed]
- Joksas, D.; Wang, E.; Barmpatsalos, N.; Ng, W.H.; Kenyon, A.J.; Constantinides, G.A.; Mehonic, A. Nonideality-Aware Training for Accurate and Robust Low-Power Memristive Neural Networks. Adv. Sci. 2022, 9, 2105784. [Google Scholar] [CrossRef] [PubMed]
- Rasch, M.J.; Mackin, C.; Le Gallo, M.; Chen, A.; Fasoli, A.; Odermatt, F.; Li, N.; Nandakumar, S.R.; Narayanan, P.; Tsai, H.; et al. Hardware-Aware Training for Large-Scale and Diverse Deep Learning Inference Workloads Using in-Memory Computing-Based Accelerators. Nat. Commun. 2023, 14, 5282. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.; Fouda, M.E.; Lee, S.; Jung, G.; Lee, J.; Eltawil, A.E.; Kurdahi, F. Training-Free Stuck-At Fault Mitigation for ReRAM-Based Deep Learning Accelerators. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 2174–2186. [Google Scholar] [CrossRef]
- Yang, X.; Wu, C.; Li, M.; Chen, Y. Tolerating Noise Effects in Processing-in-Memory Systems for Neural Networks: A Hardware–Software Codesign Perspective. Adv. Intell. Syst. 2022, 4, 2200029. [Google Scholar] [CrossRef]
- Zhang, G.L.; Li, B.; Zhu, Y.; Zhang, S.; Wang, T.; Shi, Y.; Ho, T.Y.; Li, H.H.; Schlichtmann, U. Reliable and Robust RRAM-based Neuromorphic Computing. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, GLSVLSI ’20, New York, NY, USA, 7–9 September 2020; pp. 33–38. [Google Scholar] [CrossRef]
- Lanza, M.; Waser, R.; Ielmini, D.; Yang, J.J.; Goux, L.; Suñe, J.; Kenyon, A.J.; Mehonic, A.; Spiga, S.; Rana, V.; et al. Standards for the Characterization of Endurance in Resistive Switching Devices. ACS Nano 2021, 15, 17214–17231. [Google Scholar] [CrossRef] [PubMed]
- Davies, M. Benchmarks for Progress in Neuromorphic Computing. Nat. Mach. Intell. 2019, 1, 386–388. [Google Scholar] [CrossRef]
- Stathopoulos, S.; Michalas, L.; Khiat, A.; Serb, A.; Prodromakis, T. An Electrical Characterisation Methodology for Benchmarking Memristive Device Technologies. Sci. Rep. 2019, 9, 19412. [Google Scholar] [CrossRef] [PubMed]
Neuromorphic Applications | Device Composition | Highlights | Ref. |
---|---|---|---|
Biological Emulation: | |||
(a) Synapse | Ti/Ta/HfO2/Al2O3/Pt | LTP/LTD | [85] |
(b) Neuron | Au/Ti/VO2/Al2O3/Au | LIF | [87] |
(c) STDP | W/Al/PCMO/Pt | Asymmetric STDP | [152] |
(d) Metaplasticity | Pt/WO3/Pt | Metaplasticity effects on STDP | [88] |
(e) Heteroplasticity | Pt/TiO2−x/Pt | Gated modulation of plasticity | [91] |
(f) Associative learning | Pd/C−QD/Ga2O3/Pt | Pavlovian learning | [153] |
Computer Vision: | |||
(a) Image classification | Ni/GeOx/+Si | 91.27% accuracy on CIFAR10/VGG8 | [154] |
(b) Image segmentation | TiN/Ta/TaOx/TaN | 97% accuracy on DRIVE/U-Net | [155] |
(c) Video edge detection | Pt/HfO2/Ta | 3D RRAM circuit | [156] |
Temporal & Audio Processing: | |||
(a) Time series prediction | Pt/HfO2/TiN | 0.04% error rate on Mackey-Glass time series data | [157] |
(b) Spoken digit classification | Ti/TiOx/TaOy/Pt | 99.6% accuracy on NIST TI-46 database | [158] |
(c) Speech recognition | TiN/TaOx/HfOx/TiN | 84.7% accuracy on Google speech command/LSTM | [17] |
Natural Language Processing: | |||
(a) Text generation | Pt/TiOx/Ti | Antimicrobial peptide (AMP) sequence generation | [159] |
Other Applications: | |||
(a) Medical Diagnosis | Pt/HfO2/TiN | 80% accuracy in ADHD analysis | [157] |
(b) Security Application | Cu/HfO2−x/p++Si | Physically unclonable function | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udaya Mohanan, K. Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations. Nanomaterials 2024, 14, 527. https://doi.org/10.3390/nano14060527
Udaya Mohanan K. Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations. Nanomaterials. 2024; 14(6):527. https://doi.org/10.3390/nano14060527
Chicago/Turabian StyleUdaya Mohanan, Kannan. 2024. "Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations" Nanomaterials 14, no. 6: 527. https://doi.org/10.3390/nano14060527
APA StyleUdaya Mohanan, K. (2024). Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations. Nanomaterials, 14(6), 527. https://doi.org/10.3390/nano14060527