A Light-Powered Micropump with Dynamic Collective Behavior for Reparation
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Procedure
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abid, J.-P.; Frigoli, M.; Pansu, R.; Szeftel, J.; Zyss, J.; Larpent, C.; Brasselet, S. Light-Driven Directed Motion of Azobenzene-Coated Polymer Nanoparticles in an Aqueous Medium. Langmuir 2011, 27, 7967–7971. [Google Scholar] [CrossRef] [PubMed]
- Xuan, M.J.; Wu, Z.G.; Shao, J.X.; Dai, L.R.; Si, T.Y.; He, Q. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J. Am. Chem. Soc. 2016, 138, 6492–6497. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.R.; Sun, Y.Y.; Zhang, H.; Song, B.; Dong, B. A Phototactic Micromotor Based on Platinum Nanoparticle Decorated Carbon Nitride. Nanoscale 2017, 9, 18516–18522. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.R.S.; Sun, M.M.; Lin, X.K.; Gao, C.Y.; Zhang, B.; Zheng, C.; Xie, H.; He, Q. Self-Propelled Rolled-Up Polyelectrolyte Multilayer Microrockets. Adv. Funct. Mater. 2018, 28, 1705684. [Google Scholar] [CrossRef]
- Xu, B.R.; Zhang, B.R.; Wang, L.; Huang, G.S.; Mei, Y.F. Tubular Micro/Nanomachines: From the Basics to Recent Advances. Adv. Funct. Mater. 2018, 28, 1705872. [Google Scholar] [CrossRef]
- Pavlick, R.A.; Sengupta, S.; McFadden, T.; Zhang, H.; Sen, A. A Polymerization-Powered Motor. Angew. Chem. 2011, 50, 9374–9377. [Google Scholar] [CrossRef] [PubMed]
- Howse, J.R.; Jones, R.A.L.; Ryan, A.J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007, 99, 048102. [Google Scholar] [CrossRef]
- Dong, Y.G.; Liu, M.; Zhang, H.; Dong, B. Reconfigurable OR and XOR Logic Gates Based on Dual Responsive On-Off-On Micromotors. Nanoscale 2016, 8, 8378–8383. [Google Scholar] [CrossRef]
- Brooks, A.M.; Tasinkevych, M.; Sabrina, S.; Velegol, D.; Sen, A.; Bishop, K.J.M. Shape-Directed Rotation of Homogeneous Micromotors via Catalytic Self-Electrophoresis. Nat. Commun. 2019, 10, 495. [Google Scholar] [CrossRef]
- Dong, R.F.; Hu, Y.; Wu, Y.F.; Gao, W.; Ren, B.Y.; Wang, Q.L.; Cai, Y.P. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water. J. Am. Chem. Soc. 2017, 139, 1722–1725. [Google Scholar] [CrossRef]
- Kong, L.; Rohaizad, N.; Nasir, M.Z.M.; Guan, J.G.; Pumera, M. Micromotor-Assisted Human Serum Glucose Biosensing. Anal. Chem. 2019, 91, 5660–5666. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, C.T.; Wu, J.; Ju, H.X. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS Appl. Mater. Interfaces 2019, 11, 13581–13588. [Google Scholar] [CrossRef]
- Li, J.X.; Shklyaev, O.E.; Li, T.L.; Liu, W.J.; Shum, H.; Rozen, I.; Balazs, A.C.; Wang, J. Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Lett. 2015, 15, 7077–7085. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, C.; Zhan, C.; Wang, Y.; You, Y.; Pan, X.; Jiao, J.; Zhang, R.; Dong, Z.; Wang, W.; et al. Enzymatic Micromotors as a Mobile Photosensitizer Platform for Highly Efficient On-Chip Targeted Antibacteria Photodynamic Therapy. Adv. Funct. Mater. 2019, 29, 1807727. [Google Scholar] [CrossRef]
- Gao, C.Y.; Lin, Z.H.; Wang, D.L.; Wu, Z.G.; Xie, H.; He, Q. Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 23392–23400. [Google Scholar] [CrossRef]
- Pan, D.; Mou, F.Z.; Li, X.F.; Deng, Z.Y.; Sun, J.; Xu, L.L.; Guan, J.G. Multifunctional Magnetic Oleic Acid-Coated MnFe2O4/Polystyrene Janus Particles for Water Treatment. J. Mater. Chem. A 2016, 4, 11768–11774. [Google Scholar] [CrossRef]
- Zhang, J.; Mou, F.; Wu, Z.; Tang, S.; Xie, H.; You, M.; Liang, X.; Xu, L.; Guan, J. Simple-Structured Micromotors Based on Inherent Asymmetry in Crystalline Phases: Design, Large-Scale Preparation, and Environmental Application. ACS Appl. Mater. Interfaces 2019, 11, 16639–16646. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.F.; Peng, F.; White, P.B.; Wilson, D.A. Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angew. Chem. 2017, 56, 7620–7624. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Zhu, H.L.; Shi, Y.; Ge, Y.; Feng, X.M.; Liu, R.Q.; Li, Y.; Ma, Y.W.; Wang, L.H. Novel Catalytic Micromotor of Porous Zeolitic Imidazolate Framework-67 for Precise Drug Delivery. Nanoscale 2018, 10, 11384–11391. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Duan, W.T.; Zhang, Z.X.; Sun, M.; Sen, A.; Mallouk, T.E. A Tale of Two Forces: Simultaneous Chemical and Acoustic Propulsion of Bimetallic Micromotors. Chem. Commun. 2015, 51, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, L.L.; Wei, M.S.; Wang, W. Twists and Turns of Orbiting and Spinning Metallic Microparticles Powered by Megahertz Ultrasound. ACS Nano 2017, 11, 12668–12676. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.L.; Yin, Z.Z.; Cheong, R.; Zhu, F.Q.; Cammarata, R.C.; Chien, C.L.; Levchenko, A. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 2010, 5, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C.C.; Feng, S.P.; Tang, J. Programmable Artificial Phototactic Microswimmer. Nat. Nanotechnol. 2016, 11, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Maric, T.; Nasir, M.Z.M.; Webster, R.D.; Pumera, M. Tailoring Metal/TiO2 Interface to Influence Motion of Light-Activated Janus Micromotors. Adv. Funct. Mater. 2020, 30, 1908614. [Google Scholar] [CrossRef]
- Maric, T.; Lovind, A.; Zhang, Z.; Geng, J.; Boisen, A. Near-Infrared Light-Driven Mesoporous SiO2/Au Nanomotors for Eradication of Pseudomonas aeruginosa Biofilm. Adv. Healthc. Mater. 2023, 12, e2203018. [Google Scholar] [CrossRef] [PubMed]
- Maric, T.; Nasir, M.Z.M.; Budanovic, M.; Alduhaish, O.; Webster, R.D.; Pumera, M. Corrosion of Light Powered Pt/TiO2 Microrobots. Appl. Mater. Today 2020, 20, 100659. [Google Scholar] [CrossRef]
- Solovev, A.A.; Sanchez, S.; Schmidt, O.G. Collective Behaviour of Self-Propelled Catalytic Micromotors. Nanoscale 2013, 5, 1284–1293. [Google Scholar] [CrossRef]
- Ibele, M.; Mallouk, T.E.; Sen, A. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angew. Chem. 2009, 48, 3308–3312. [Google Scholar] [CrossRef]
- Palacci, J.; Sacanna, S.; Steinberg, A.P.; Pine, D.J.; Chaikin, P.M. Living Crystals of Light-Activated Colloidal Surfers. Science 2013, 339, 936–940. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Mou, F.Z.; Tang, S.W.; Xu, L.L.; Luo, M.; Guan, J.G. Swarming and Collective Migration of Micromotors under Near Infrared Light. Appl. Mater. Today 2018, 13, 45–53. [Google Scholar] [CrossRef]
- Lin, Z.H.; Si, T.Y.; Wu, Z.G.; Gao, C.Y.; Lin, X.K.; He, Q. Light-Activated Active Colloid Ribbons. Angew. Chem. 2017, 56, 13517–13520. [Google Scholar] [CrossRef]
- Jin, D.D.; Yu, J.F.; Yuan, K.; Zhang, L. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano 2019, 13, 5999–6007. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.J.; Kar, A.; Daher, M.; Klara, S.; Wang, G.; Sen, A.; Velegol, D. Self-Generated Diffusioosmotic Flows from Calcium Carbonate Micropumps. Langmuir 2012, 28, 15491–15497. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rivera, I.; Shum, H.; Agrawal, A.; Sen, A.; Balazs, A.C. Convective Flow Reversal in Self-Powered Enzyme Micropumps. Proc. Natl. Acad. Sci. USA 2016, 113, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Pei, A.; Dong, R.F.; Wang, J. Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. J. Am. Chem. Soc. 2014, 136, 2276–2279. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, X.; Hahn, K.; Sanchez, S. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano 2016, 10, 3597–3605. [Google Scholar] [CrossRef]
- Sengupta, S.; Patra, D.; Rivera, I.O.; Agrawal, A.; Shklyaev, S.; Dey, K.K.; Figueroa, U.C.; Mallouk, T.E.; Sen, A. Self-Powered Enzyme Micropumps. Nat. Chem. 2014, 6, 415–422. [Google Scholar] [CrossRef]
- Okawa, D.; Pastine, S.J.; Zettl, A.; Frechet, J.M.J. Surface Tension Mediated Conversion of Light to Work. J. Am. Chem. Soc. 2009, 131, 5396–5398. [Google Scholar] [CrossRef]
- Yadav, V.; Zhang, H.; Pavlick, R.; Sen, A. Triggered “On/Off” Micropumps and Colloidal Photodiode. J. Am. Chem. Soc. 2012, 134, 15688–15691. [Google Scholar] [CrossRef]
- Esplandiu, M.J.; Farniya, A.A.; Bachtold, A. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light. ACS Nano 2015, 9, 11234–11240. [Google Scholar] [CrossRef]
- Guo, Y.T.; Wang, D.C.; Li, J.A.; Sun, Y.Y.; Li, M.T.; Zhang, H.; Duan, R.M.; Zhang, D.F.; Song, B.; Dong, B. A Fuel-free Polymer-based Micropump with Optically Tunable Pumping Directions. J. Mater. Chem. C 2019, 7, 2299–2304. [Google Scholar] [CrossRef]
- Farniya, A.A.; Esplandiu, M.J.; Bachtold, A. Sequential Tasks Performed by Catalytic Pumps for Colloidal Crystallization. Langmuir 2014, 30, 11841–11845. [Google Scholar] [CrossRef] [PubMed]
- Patra, D.; Zhang, H.; Sengupta, S.; Sen, A. Dual Stimuli-Responsive, Rechargeable Micropumps via “Host-Guest” Interactions. ACS Nano 2013, 7, 7674–7679. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.M.; Schelkopf, S.R.; Jackson, A.C.; Landry, A.M.; Braun, P.V.; Moore, J.S. Microcapsules Containing Suspensions of Carbon Nanotubes. J. Mater. Chem. 2009, 19, 6093. [Google Scholar] [CrossRef]
- Chiechi, R.C.; Weiss, E.A.; Dickey, M.D.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 2008, 47, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Tee, B.C.K.; Wang, C.; Allen, R.; Bao, Z.N. An Electrically and Mechanically Self-Healing Composite with Pressure- and Flexion-Sensitive Properties for Electronic Skin Applications. Nat. Nanotechnol. 2012, 7, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Aboudzadeh, M.A.; Munoz, M.E.; Santamaria, A.; Marcilla, R.; Mecerreyes, D. Facile Synthesis of Supramolecular Ionic Polymers that Combine Unique Rheological, Ionic Conductivity, and Self-healing Properties. Macromol. Rapid Commun. 2012, 33, 314–318. [Google Scholar] [CrossRef]
- Gong, C.K.; Liang, J.J.; Hu, W.; Niu, X.F.; Ma, S.W.; Hahn, H.T.; Pei, Q.B. A Healable, Semitransparent Silver Nanowire-Polymer Composite Conductor. Adv. Mater. 2013, 25, 4186–4191. [Google Scholar] [CrossRef]
- Odom, S.A.; Caruso, M.M.; Finke, A.D.; Prokup, A.M.; Ritchey, J.A.; Leonard, J.H.; White, S.R.; Sottos, N.R.; Moore, J.S. Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts. Adv. Funct. Mater. 2010, 20, 1721–1727. [Google Scholar] [CrossRef]
- Odom, S.A.; Tyler, T.P.; Caruso, M.M.; Ritchey, J.A.; Schulmerich, M.V.; Robinson, S.J.; Bhargava, R.; Sottos, N.R.; White, S.R.; Hersam, M.C.; et al. Autonomic Restoration of Electrical Conductivity Using Polymer-Stabilized Carbon Nanotube and Graphene Microcapsules. Appl. Phys. Lett. 2012, 101, 043106. [Google Scholar] [CrossRef]
- Kang, S.; Jones, A.R.; Moore, J.S.; White, S.R.; Sottos, N.R. Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. Adv. Funct. Mater. 2014, 24, 2947–2956. [Google Scholar] [CrossRef]
- Hwang, J.; Sunesh, C.D.; Chandran, M.; Lee, J.; Choe, Y. Performance Characteristics of Pentacene-based Organic Photovoltaic Cells. Org. Electron. 2012, 13, 1809–1818. [Google Scholar] [CrossRef]
- Dong, R.F.; Zhang, Q.L.; Gao, W.; Pei, A.; Ren, B.Y. Highly Efficient Light-Driven TiO2-Au Janus Micromotors. ACS Nano 2016, 10, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.T.; Liu, R.; Sen, A. Transition between Collective Behaviors of Micromotors in Response to Different Stimuli. J. Am. Chem. Soc. 2013, 135, 1280–1283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, H.; Jiang, J.; Zhang, H.; Liu, L.; Zhang, K.; Song, B.; Dong, B. A Light-Powered Micropump with Dynamic Collective Behavior for Reparation. Nanomaterials 2024, 14, 517. https://doi.org/10.3390/nano14060517
Sun Y, Wang H, Jiang J, Zhang H, Liu L, Zhang K, Song B, Dong B. A Light-Powered Micropump with Dynamic Collective Behavior for Reparation. Nanomaterials. 2024; 14(6):517. https://doi.org/10.3390/nano14060517
Chicago/Turabian StyleSun, Yunyu, Hao Wang, Jiwei Jiang, Hui Zhang, Limei Liu, Keying Zhang, Bo Song, and Bin Dong. 2024. "A Light-Powered Micropump with Dynamic Collective Behavior for Reparation" Nanomaterials 14, no. 6: 517. https://doi.org/10.3390/nano14060517
APA StyleSun, Y., Wang, H., Jiang, J., Zhang, H., Liu, L., Zhang, K., Song, B., & Dong, B. (2024). A Light-Powered Micropump with Dynamic Collective Behavior for Reparation. Nanomaterials, 14(6), 517. https://doi.org/10.3390/nano14060517