Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mak, K.F.; Shan, J.; Heinz, T.F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 2010, 104, 176404. [Google Scholar] [CrossRef] [PubMed]
- Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 2010, 81, 125304. [Google Scholar] [CrossRef]
- Avetisyan, A.; Partoens, B.; Peeters, F. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 2010, 81, 115432. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Alden, J.S.; Tsen, A.W.; Huang, P.Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D.A.; McEuen, P.L. Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 2013, 110, 11256–11260. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, Y.; Li, H.; Huang, X.; Zhang, H. Crystal phase control in two-dimensional materials. Sci. China Chem. 2018, 61, 1227–1242. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, M.; Liu, J.; Xu, J.; Fu, L. Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 2019, 62, 759–775. [Google Scholar] [CrossRef]
- Guinea, F.; Neto, A.C.; Peres, N. Electronic states and landau levels in graphene stacks. Phys. Rev. B 2006, 73, 245426. [Google Scholar] [CrossRef]
- Aoki, M.; Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007, 142, 123–127. [Google Scholar] [CrossRef]
- Craciun, M.; Russo, S.; Yamamoto, M.; Oostinga, J.B.; Morpurgo, A.; Tarucha, S. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 2009, 4, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.H.; Wu, S.; Kato, R.; Wu, T.-S.; Kulhavy, J.; Mo, J.; Zheng, J.; Foord, J.S.; Soo, Y.-L.; Suenaga, K. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yu, P.; Liu, F.; He, P.; Wang, R.; Qin, L.; Zhou, J.; Li, X.; Zhou, J.; Sui, X. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Wu, Y.; Bian, R.; Pan, E.; Dong, B.; Zhao, X.; Chen, J.; Wu, L.; Sun, Y.; Fu, Q. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 2022, 13, 7696. [Google Scholar] [CrossRef] [PubMed]
- Lui, C.H.; Li, Z.; Chen, Z.; Klimov, P.V.; Brus, L.E.; Heinz, T.F. Imaging stacking order in few-layer graphene. Nano Lett. 2011, 11, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Puretzky, A.A.; Liang, L.; Li, X.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J.C.; Sumpter, B.G.; Meunier, V. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333–6342. [Google Scholar] [CrossRef]
- Yan, J.; Xia, J.; Wang, X.; Liu, L.; Kuo, J.-L.; Tay, B.K.; Chen, S.; Zhou, W.; Liu, Z.; Shen, Z.X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161. [Google Scholar] [CrossRef]
- Qiao, X.-F.; Wu, J.-B.; Zhou, L.; Qiao, J.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P.-H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332. [Google Scholar] [CrossRef]
- Puretzky, A.A.; Liang, L.; Li, X.; Xiao, K.; Sumpter, B.G.; Meunier, V.; Geohegan, D.B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, Y.-C.; Woods, C.R.; Shi, Y.; Yin, J.; Xu, S.; Ozdemir, S.; Taniguchi, T.; Watanabe, K.; Geim, A.K. Stacking order in graphite films controlled by van der Waals technology. Nano Lett. 2019, 19, 8526–8532. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Dumcenco, D.O.; Huang, Y.-S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396. [Google Scholar] [CrossRef]
- Yan, A.; Chen, W.; Ophus, C.; Ciston, J.; Lin, Y.; Persson, K.; Zettl, A. Identifying different stacking sequences in few-layer CVD-grown MoS2 by low-energy atomic-resolution scanning transmission electron microscopy. Phys. Rev. B 2016, 93, 041420. [Google Scholar] [CrossRef]
- Yan, A.; Ong, C.S.; Qiu, D.Y.; Ophus, C.; Ciston, J.; Merino, C.; Louie, S.G.; Zettl, A. Dynamics of symmetry-breaking stacking boundaries in bilayer MoS2. J. Phys. Chem. C 2017, 121, 22559–22566. [Google Scholar] [CrossRef]
- Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater. Appl. 2017, 1, 8. [Google Scholar] [CrossRef]
- Leng, K.; Chen, Z.; Zhao, X.; Tang, W.; Tian, B.; Nai, C.T.; Zhou, W.; Loh, K.P. Phase restructuring in transition metal dichalcogenides for highly stable energy storage. ACS Nano 2016, 10, 9208–9215. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, Z.; Chen, J.; Dan, J.; Poh, S.M.; Fu, W.; Pennycook, S.J.; Zhou, W.; Loh, K.P. Strain modulation by van der Waals coupling in bilayer transition metal dichalcogenide. ACS Nano 2018, 12, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fu, D.; Ding, Z.; Zhang, Y.-Y.; Wan, D.; Tan, S.J.; Chen, Z.; Leng, K.; Dan, J.; Fu, W. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482–490. [Google Scholar] [CrossRef]
- Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P.M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403. [Google Scholar] [CrossRef]
- Mishina, E.; Sherstyuk, N.; Lavrov, S.; Sigov, A.; Mitioglu, A.; Anghel, S.; Kulyuk, L. Observation of two polytypes of MoS2 ultrathin layers studied by second harmonic generation microscopy and photoluminescence. Appl. Phys. Lett. 2015, 106, 131901. [Google Scholar] [CrossRef]
- Shinde, S.M.; Dhakal, K.P.; Chen, X.; Yun, W.S.; Lee, J.; Kim, H.; Ahn, J.-H. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater. 2018, 10, e468. [Google Scholar] [CrossRef]
- Song, Y.; Tian, R.; Yang, J.; Yin, R.; Zhao, J.; Gan, X. Second harmonic generation in atomically thin MoTe2. Adv. Opt. Mater. 2018, 6, 1701334. [Google Scholar] [CrossRef]
- Yang, D.; Hu, X.; Zhuang, M.; Ding, Y.; Zhou, S.; Li, A.; Yu, Y.; Li, H.; Luo, Z.; Gan, L. Inversion symmetry broken 2D 3R-MoTe2. Adv. Funct. Mater. 2018, 28, 1800785. [Google Scholar] [CrossRef]
- Dasgupta, A.; Gao, J.; Yang, X. Natural van der Waals heterostructure cylindrite with highly anisotropic optical responses. npj 2d Mater. Appl. 2021, 5, 74. [Google Scholar] [CrossRef]
- Dasgupta, A.; Yang, X.; Gao, J. Natural 2D layered mineral cannizzarite with anisotropic optical responses. Sci. Rep. 2022, 12, 10006. [Google Scholar] [CrossRef] [PubMed]
- Amber, Z.H.; Spychala, K.J.; Eng, L.M.; Rüsing, M. Nonlinear optical interactions in focused beams and nanosized structures. J. Appl. Phys. 2022, 132, 213102. [Google Scholar] [CrossRef]
- Li, H.; Utama, M.I.B.; Wang, S.; Zhao, W.; Zhao, S.; Xiao, X.; Jiang, Y.; Jiang, L.; Taniguchi, T.; Watanabe, K. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 2020, 20, 3106–3112. [Google Scholar] [CrossRef]
- Wirth, K.G.; Hauck, J.B.; Rothstein, A.; Kyoseva, H.; Siebenkotten, D.; Conrads, L.; Klebl, L.; Fischer, A.; Beschoten, B.; Stampfer, C. Experimental observation of ABCB stacked tetralayer graphene. ACS Nano 2022, 16, 16617–16623. [Google Scholar] [CrossRef]
- Choi, B.; Jeong, G.; Ahn, S.; Lee, H.; Jang, Y.; Park, B.; Bechtel, H.A.; Hong, B.H.; Min, H.; Kim, Z.H. Role of local conductivities in the plasmon reflections at the edges and stacking domain boundaries of trilayer graphene. J. Phys. Chem. Lett. 2023, 14, 8157–8164. [Google Scholar] [CrossRef]
- Beitner, D.; Amitay, S.; Salleh Atri, S.; McEllistrim, A.; Coen, T.; Fal’ko, V.I.; Richter, S.; Ben Shalom, M.; Suchowski, H. Mid-infrared mapping of four-layer graphene polytypes using near-field microscopy. Nano Lett. 2023, 23, 10758–10764. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, H.; Kim, M.S.; Han, G.H.; Kim, J. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation. Opt. Express 2016, 24, 21551–21559. [Google Scholar] [CrossRef]
- Wu, H.; Yu, X.; Zhu, M.; Zhu, Z.; Zhang, J.; Zhang, S.; Qin, S.; Wang, G.; Peng, G.; Dai, J. Direct visualization and manipulation of stacking orders in few-layer graphene by dynamic atomic force microscopy. J. Phys. Chem. Lett. 2021, 12, 7328–7334. [Google Scholar] [CrossRef]
- Lee, K.; Utama, M.I.B.; Kahn, S.; Samudrala, A.; Leconte, N.; Yang, B.; Wang, S.; Watanabe, K.; Taniguchi, T.; Altoé, M.V.P. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures. Sci. Adv. 2020, 6, eabd1919. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, Z.; Luo, F.; Wang, G.; Peng, G.; Zhu, M.; Qin, S. Strain-induced alternating photoluminescence segmentation in hexagonal monolayer tungsten disulfide grown by physical vapor deposition. ACS Appl. Mater. Interfaces 2021, 13, 46164–46170. [Google Scholar] [CrossRef]
- Yu, J.; Giridharagopal, R.; Li, Y.; Xie, K.; Li, J.; Cao, T.; Xu, X.; Ginger, D.S. Imaging graphene moiré superlattices via scanning Kelvin probe microscopy. Nano Lett. 2021, 21, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Vizner Stern, M.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Ben Shalom, M. Interfacial ferroelectricity by van der Waals sliding. Science 2021, 372, 1462–1466. [Google Scholar] [CrossRef]
- Weston, A.; Castanon, E.G.; Enaldiev, V.; Ferreira, F.; Bhattacharjee, S.; Xu, S.; Corte-León, H.; Wu, Z.; Clark, N.; Summerfield, A. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 2022, 17, 390–395. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Lee, J.-U.; Kim, K.; Han, S.; Ryu, G.H.; Lee, Z.; Cheong, H. Raman signatures of polytypism in molybdenum disulfide. ACS Nano 2016, 10, 1948–1953. [Google Scholar] [CrossRef]
- Van Baren, J.; Ye, G.; Yan, J.-A.; Ye, Z.; Rezaie, P.; Yu, P.; Liu, Z.; He, R.; Lui, C.H. Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2d Mater. 2019, 6, 025022. [Google Scholar] [CrossRef]
- Xu, K.; Pan, Y.; Ye, S.; Lei, L.; Hussain, S.; Wang, Q.; Yang, Z.; Liu, X.; Ji, W.; Xu, R. Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals. Appl. Phys. Lett. 2019, 115, 063101. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef] [PubMed]
- Lembke, D.; Bertolazzi, S.; Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 2015, 48, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Naumov, P.G.; Ali, M.N.; Rajamathi, C.R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.-C.; Shekhar, C.; Sun, Y. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, Y.; Zhou, S.; Li, H.; Wong, H.; Luo, Z.; Gan, L.; Zhai, T. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1802473. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P.T.; Gan, C.K.; Wu, J.; Zhang, H.; Quek, S.Y.; Dresselhaus, M.S.; et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015. [Google Scholar] [CrossRef]
- Yoshida, M.; Ye, J.; Zhang, Y.; Imai, Y.; Kimura, S.; Fujiwara, A.; Nishizaki, T.; Kobayashi, N.; Nakano, M.; Iwasa, Y. Extended polymorphism of two-dimensional material. Nano Lett. 2017, 17, 5567–5571. [Google Scholar] [CrossRef]
- Zhang, Y.; Brar, V.W.; Girit, C.; Zettl, A.; Crommie, M.F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 2009, 5, 722–726. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Smit, R.H.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. Carbon 2012, 50, 932–938. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Cappelluti, E.; Roldán, R.; Agraït, N.; Guinea, F.; Rubio-Bollinger, G. Electric-field screening in atomically thin layers of MoS2: The role of interlayer coupling. Adv. Mater. 2013, 25, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.S.; Strachan, D.R.; Mele, E.; Johnson, A.C. Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett. 2009, 9, 7–11. [Google Scholar] [CrossRef]
- Li, L.H.; Santos, E.J.; Xing, T.; Cappelluti, E.; Roldán, R.; Chen, Y.; Watanabe, K.; Taniguchi, T. Dielectric screening in atomically thin boron nitride nanosheets. Nano Lett. 2015, 15, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, C.-Y.; Zhen, L. Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes. Appl. Phys. Lett. 2013, 102, 143110. [Google Scholar] [CrossRef]
- Lee, N.; Yoo, J.; Choi, Y.; Kang, C.; Jeon, D.; Kim, D.; Seo, S.; Chung, H. The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl. Phys. Lett. 2009, 95, 222107. [Google Scholar] [CrossRef]
- Narchi, P.; Neplokh, V.; Piazza, V.; Bearda, T.; Bayle, F.; Foldyna, M.; Toccafondi, C.; Prod’homme, P.; Tchernycheva, M.; i Cabarrocas, P.R. Surface potential investigation on interdigitated back contact solar cells by scanning electron microscopy and Kelvin probe force microscopy: Effect of electrical bias. Sol. Energy Mater. Sol. Cells 2017, 161, 263–269. [Google Scholar] [CrossRef]
- Li, L.H.; Tian, T.; Cai, Q.; Shih, C.-J.; Santos, E.J. Asymmetric electric field screening in van der Waals heterostructures. Nat. Commun. 2018, 9, 1271. [Google Scholar] [CrossRef]
- Jespersen, T.S.; Nygård, J. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett. 2005, 5, 1838–1841. [Google Scholar] [CrossRef]
- Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M.; Macdonald, J.E. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative. Sci. Rep. 2013, 3, 3352. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tian, X.; Liu, J.; Dong, Z.; Liu, L. The influence of probe lift-up height on CNT electrical properties measurement under FFM DC mode. Chin. Sci. Bull. 2014, 59, 1591–1596. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, T. Measuring the local electrical properties of individual vanadium-pentoxide nanowires by using electrostatic force microscopy. J. Korean Phys. Soc. 2015, 67, 2081–2085. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, C.; Zhang, J.; Li, H. Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. Nanomaterials 2024, 14, 339. https://doi.org/10.3390/nano14040339
Pei C, Zhang J, Li H. Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. Nanomaterials. 2024; 14(4):339. https://doi.org/10.3390/nano14040339
Chicago/Turabian StylePei, Chengjie, Jindong Zhang, and Hai Li. 2024. "Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy" Nanomaterials 14, no. 4: 339. https://doi.org/10.3390/nano14040339
APA StylePei, C., Zhang, J., & Li, H. (2024). Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. Nanomaterials, 14(4), 339. https://doi.org/10.3390/nano14040339