Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolite Preparation
2.2. Synthesis of Zeolite–Ag Composite
2.2.1. Green Synthesis of Silver Nanoparticles
2.2.2. Homogeneous Nucleation of Ag Nanoparticles into Zeolite
2.3. Adsorption Experiments
2.4. Kinetic Adsorption Models
3. Results and Discussion
3.1. Materials Characterization
3.1.1. Scanning Electron Microscopy SEM
3.1.2. Transmission Electron Microscopy SEM
3.1.3. X-ray Diffraction Analysis
3.2. Adsorption Study of Cu2+ by Zeolite and Zeolite–Ag
3.3. Kinetic Adsorption Models
3.3.1. Linear Models Adsorption Models
3.3.2. Non-Linear Adsorption Models
3.4. Non-Linear Langmuir and Freundlich Adsorptions Isotherms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, H.; Ding, N.; Ma, D.; Xu, Q.; Lin, B.; Qiu, B.; Lin, Z.; Guo, L. Green Synthesis of Three-Dimensional Au Nanorods@TiO2 Nanocomposites as Self-Cleaning SERS Substrate for Sensitive, Recyclable, and In Situ Sensing Environmental Pollutants. Biosensors 2023, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Ma, C.; Wang, Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. Biosensors 2023, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Štukovnik, Z.; Fuchs-godec, R. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. Biosensors 2023, 13, 899. [Google Scholar] [CrossRef]
- Chen, G.Y.; Yin, S.J.; Chen, L.; Zhou, X.; Yang, F.Q. Nanoporous ZIF-8 Microparticles as Acetylcholinesterase and Alkaline Phosphatase Mimics for the Selective and Sensitive Detection of Ascorbic Acid Oxidase and Copper Ions. Biosensors 2022, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhan, L.; Xue, Z.; Yusef, K.K.; Hu, H.; Wu, M. Adsorption of Cu (II) and Cd (II) from Wastewater by Sodium Alginate Modified Materials. J. Chem. 2020, 2020, 5496712. [Google Scholar] [CrossRef]
- Kunecki, P.; Wdowin, M.; Hanc, E. Fly Ash-Derived Zeolites and Their Sorption Abilities in Relation to Elemental Mercury in a Simulated Gas Stream. J. Clean. Prod. 2023, 391, 136181. [Google Scholar] [CrossRef]
- Belviso, C.; Lucini, P.; Mancinelli, M.; Abdolrahimi, M.; Martucci, A.; Peddis, D.; Maraschi, F.; Cavalcante, F.; Sturini, M. Lead, Zinc, Nickel and Chromium Ions Removal from Polluted Waters Using Zeolite Formed from Bauxite, Obsidian and Their Combination with Red Mud: Behaviour and Mechanisms. J. Clean. Prod. 2023, 415, 137814. [Google Scholar] [CrossRef]
- Li, J.; Fan, M.; Yuan, Z.; Liu, F.; Li, M. One-Pot Synthesis of Lamellar Fe-Cu Bimetal-Decorated Reduced Graphene Oxide and Its Enhanced Removal of Cr(VI) from Water. Nanomaterials 2023, 13, 2745. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, J.; Xu, Y.; Wang, S.; An, W.; Chai, Q.; Prova, U.H.; Wang, C.; Huang, G. Biomass Derived Diverse Carbon Nanostructure for Electrocatalysis, Energy Conversion and Storage. Carbon N. Y. 2023, 211, 118105. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Łach, M.; Marczyk, J.; Hordyńska, N.; Szechyńska-Hebda, M.; Hebda, M. Eco-Friendly Zeolites for Innovative Purification of Water from Cationic Dye and Heavy Metal Ions. J. Clean. Prod. 2023, 406, 136947. [Google Scholar] [CrossRef]
- García-Chirino, J.; Dáder Jiménez, A.; Van Der Bruggen, B. Hybrid Na-A Zeolite/Oxycut Residue Thin Film Composite Nanofiltration Membrane for Cr (III) Removal. J. Environ. Chem. Eng. 2023, 11, 109351. [Google Scholar] [CrossRef]
- Natsuki, J.; Natsuki, T. Silver Nanoparticle/Carbon Nanotube Hybrid Nanocomposites: One-Step Green Synthesis, Properties, and Applications. Nanomaterials 2023, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-Baltazar, A.; Pérez, R. Kinetic Adsorption Study of Silver Nanoparticles on Natural Zeolite: Experimental and Theoretical Models. Appl. Sci. 2015, 5, 1869–1881. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, A.; Esparza, R.; Gonzalez, M.; Rosas, G.; Pérez, R. Preparation and Characterization of Natural Zeolite Modified with Iron Nanoparticles. J. Nanomater. 2015, 2015, 364763. [Google Scholar] [CrossRef]
- Bahos, F.A.; Sainz-Vidal, A.; Sánchez-Pérez, C.; Saniger, J.M.; Gràcia, I.; Saniger-Alba, M.M.; Matatagui, D. ZIF Nanocrystal-Based Surface Acousticwave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors 2019, 9, 4. [Google Scholar] [CrossRef]
- Li, S.; Wan, Y.; Li, Y.; Liu, J.; Pi, F.; Liu, L. A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters. Biosensors 2023, 13, 35. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, R.; Wu, Y.; Chang, Y.; Liu, M. An Electrochemical Aptasensor Integrating Zeolitic Imidazolate Framework for Highly Selective Detection of Bioaerosols. Biosensors 2022, 12, 725. [Google Scholar] [CrossRef]
- Shu, Z.; Zhou, R.; Hao, G.; Tang, X.; Liu, X.; Bi, J.; Dai, H.; Shen, Y. Zeolitic Imidazolate Framework-8 Composite-Based Enzyme-Linked Aptamer Assay for the Sensitive Detection of Deoxynivalenol. Biosensors 2023, 13, 847. [Google Scholar] [CrossRef]
- Simonova, E.A.; Kuznetsov, A.B.; Svetlichnyi, V.A.; Kononova, N.G.; Shevchenko, V.S.; Nigmatulina, E.N.; Kolesnichenko, M.V.; Kokh, K.A.; Rashchenko, S.V.; Kokh, A.E. Nd3+ and Pr3+ Doped Anti-Zeolite Matrix-LiBa12(BO3)7F4: Crystal Structures, Luminescence Properties. Mater. Chem. Phys. 2020, 247, 122612. [Google Scholar] [CrossRef]
- Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Sajjad, W.; Wu, F.; Bibi, N.; Shah, K.; Yali, Z.; Wang, W. Green Synthesis of Silver Nanoparticles and Their Shortcomings, Animal Blood a Potential Source for Silver Nanoparticles: A Review. J. Hazard. Mater. Adv. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Kong, L.-J.; Xie, Y.-M.; Chen, X.-Y.; Xi, C.; Zhang, F.-F.; Wang, M.; Shang, L.; Huang, Y.; Du, X.-W.; Kulinich, S.A. Ag-Doped Cu Nanosheet Arrays for Efficient Hydrogen Evolution Reaction. Chem. Commun. 2023, 59, 6533–6535. [Google Scholar] [CrossRef] [PubMed]
- Hassan Afandy, H.; Sabir, D.K.; Aziz, S.B. Antibacterial Activity of the Green Synthesized Plasmonic Silver Nanoparticles with Crystalline Structure against Gram-Positive and Gram-Negative Bacteria. Nanomaterials 2023, 13, 1327. [Google Scholar] [CrossRef] [PubMed]
- Gaurav, I.; Thakur, A.; Kumar, G.; Long, Q.; Zhang, K.; Sidu, R.K.; Thakur, S.; Sarkar, R.K.; Kumar, A.; Iyaswamy, A.; et al. Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker. Nanomaterials 2023, 13, 1306. [Google Scholar] [CrossRef] [PubMed]
- Bekmezci, M.; Ozturk, H.; Akin, M.; Bayat, R.; Sen, F.; Darabi, R.; Karimi-Maleh, H. Bimetallic Biogenic Pt-Ag Nanoparticle and Their Application for Electrochemical Dopamine Sensor. Biosensors 2023, 13, 531. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Zhang, S.; Bao, L.; Li, H.; Xu, J.; He, B.; Hou, X. Reporter Molecules Embedded Au@Ag Core-Shell Nanospheres as SERS Nanotags for Cardiac Troponin I Detection. Biosensors 2022, 12, 1108. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, A.; Reyes-López, S.Y.; Tellez-Vasquez, O.; Esparza, R.; Rosas, G.; Pérez, R. Analysis for the Sorption Kinetics of Ag Nanoparticles on Natural Clinoptilolite. Adv. Condens. Matter Phys. 2015, 2015, 284518. [Google Scholar] [CrossRef]
- Liu, J.; Lin, H.; Dong, Y.; He, Y.; Liu, W.; Shi, Y. The Effective Adsorption of Tetracycline onto MoS2@Zeolite-5: Adsorption Behavior and Interfacial Mechanism. J. Environ. Chem. Eng. 2021, 9, 105912. [Google Scholar] [CrossRef]
- Xie, H.; Pan, W.; Zhou, Y.; Li, P.; Zou, G.; Du, L.; Guo, X. Micro- and Nano-Plastics Play Different Roles in Oxytetracycline Adsorption on Natural Zeolite: Additional Adsorbent and Competitive Adsorbate. J. Environ. Chem. Eng. 2023, 11, 109648. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, Á.d.J. Environmentally Friendly Alternative for Heavy Metal Adsorption Based on Doped Diatoms with Au Nanoparticles: A Novel Approach in Green Synthesis of Adsorbents and Kinetic Adsorption Study. Colloids Interface Sci. Commun. 2022, 46, 100559. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, Á.d.J.; dReyes-López, S.Y.; Zamora Antuñano, M.A.; Pérez, R. Application of Modified Silicates with Gold Nanoparticles on Environmental Remediation: Study of Non-Linear Kinetic Adsorption Models Focused on Heavy Metals. Inorg. Chem. Commun. 2022, 144, 109899. [Google Scholar] [CrossRef]
- Razmi, F.A.; Ngadi, N.; Wong, S.; Inuwa, I.M.; Opotu, L.A. Kinetics, Thermodynamics, Isotherm and Regeneration Analysis of Chitosan Modified Pandan Adsorbent. J. Clean. Prod. 2019, 231, 98–109. [Google Scholar] [CrossRef]
- Yan, C.; Cheng, Z.; Tian, Y.; Qiu, F.; Chang, H.; Li, S.; Cai, Y.; Quan, X. Adsorption of Ni(II) on Detoxified Chromite Ore Processing Residue Using Citrus Peel as Reductive Mediator: Adsorbent Preparation, Kinetics, Isotherm, and Thermodynamics Analysis. J. Clean. Prod. 2021, 315, 128209. [Google Scholar] [CrossRef]
- Liu, L.; Lin, X.; Luo, L.; Yang, J.; Luo, J.; Liao, X.; Cheng, H. Biosorption of Copper Ions through Microalgae from Piggery Digestate: Optimization, Kinetic, Isotherm and Mechanism. J. Clean. Prod. 2021, 319, 128724. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Li, Y.; Zha, J.; Tian, G.; Wang, F.; Zhang, H.; Liang, J. Synthesis of Zeolites by In-Situ Conversion of Geopolymers and Their Performance of Heavy Metal Ion Removal in Wastewater:A Review. J. Clean. Prod. 2022, 349, 131441. [Google Scholar] [CrossRef]
- Han, L.; Wang, X.; Wu, B.; Zhu, S.; Wang, J.; Zhang, Y. In-Situ Synthesis of Zeolite X in Foam Geopolymer as a CO2 Adsorbent. J. Clean. Prod. 2022, 372, 133591. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Jiraroj, D.; Tungasmita, S.; Tungasmita, D.N. Silver Ions and Silver Nanoparticles in Zeolite A Composites for Antibacterial Activity. Powder Technol. 2014, 264, 418–422. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Meng, W.; Sun, S.; Xie, D.; Dai, S.; Shao, W.; Zhang, Q.; Qin, C.; Liang, G.; Li, X. Engineering Defective Co3O4 Containing Both Metal Doping and Vacancy in Octahedral Cobalt Site as High Performance Catalyst for Methane Oxidation. Mol. Catal. 2024, 553, 113768. [Google Scholar] [CrossRef]
- Uzunova, E.L.; Mikosch, H. Cation Site Preference in Zeolite Clinoptilolite: A Density Functional Study. Microporous Mesoporous Mater. 2013, 177, 113–119. [Google Scholar] [CrossRef]
- Yang, S.; Yang, L.; Gao, M.; Bai, H.; Nagasaka, T. Synthesis of Zeolite-Geopolymer Composites with High Zeolite Content for Pb(II) Removal by a Simple Two-Step Method Using Fly Ash and Metakaolin. J. Clean. Prod. 2022, 378, 134528. [Google Scholar] [CrossRef]
Linear Models | Non-Linear Models | ||
---|---|---|---|
Model | Equation | Model | Equation |
Pseudo-First-Order (PFO) | Pseudo-First Order Type 1 | ||
Pseudo-Second-Order (PSO) | Pseudo-First Order Type 2 | ||
Elovich | Pseudo-Second Order Type 1 | ||
Intraparticle Diffusion | Pseudo-Second Order Type 2 |
Linear Models | ||||||||
---|---|---|---|---|---|---|---|---|
SAMPLE | PFO (Linear) | PSO (Linear) K2 (g/mgmin); qe(mg/g) | Elovich | Intraparticle Diffusion | ||||
Zeolite | K1 | 0.0069 | K2 | 0.1951 | α | 1715.125 | Ci | 0.00113 |
qe | 5.45 × 10−4 | β | −337.838 | Ki | 0.00065003 | |||
R2 | 0.9922 | R2 | 0.994 | R2 | 0.992 | R2 | 0.971 | |
Zeolite–Ag | K1 | 0.0197 | K2 | 0.0758 | α | 536.699 | Ci | −0.002 |
qe | 0.0013 | β | −118.343 | Ki | 0.001 | |||
R2 | 0.9437 | R2 | 0.9641 | R2 | 0.944 | R2 | 0.975 |
MODEL | SAMPLE | TYPE 1 | TYPE 2 | ||
---|---|---|---|---|---|
NL Pseudo-First-Order | Zeolite | k1 | 0.01848 | k1 | 0.005158 |
qe | 0.00446 | qe | 0.05838 | ||
R2 | 0.9923 | ms | 21.7614 | ||
- | - | Co | 1.4686 | ||
- | - | R2 | 0.9987 | ||
Zeolite-Ag | k1 | 0.02381 | k1 | 0.0039 | |
qe | 0.00399 | qe | 0.05953 | ||
R2 | 0.9933 | ms | 22.1913 | ||
- | - | Co | 1.1096 | ||
- | - | R2 | 0.9973 | ||
NL Pseudo-Second-Order | Zeolite | k1 | 0.1894 | k2 | 0.0249 |
qe | 0.02348 | qe | 0.1786 | ||
R2 | 0.9981 | ms | 19.7481 | ||
- | - | Co | 3.0042 | ||
- | - | R2 | 0.9986 | ||
Zeolite-Ag | k1 | 0.0829 | k2 | 0.01343 | |
qe | 0.03523 | qe | 0.21746 | ||
R2 | 0.9985 | ms | 19.9989 | ||
- | - | Co | 2.4678 | ||
- | - | R2 | 0.9965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz-Baltazar, Á.d.J.; Reyes-López, S.Y.; Méndez-Lozano, N.; Medellín-Castillo, N.A.; Pérez, R. Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches. Nanomaterials 2024, 14, 258. https://doi.org/10.3390/nano14030258
Ruíz-Baltazar ÁdJ, Reyes-López SY, Méndez-Lozano N, Medellín-Castillo NA, Pérez R. Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches. Nanomaterials. 2024; 14(3):258. https://doi.org/10.3390/nano14030258
Chicago/Turabian StyleRuíz-Baltazar, Álvaro de Jesús, Simón Yobanny Reyes-López, Néstor Méndez-Lozano, Nahum Andrés Medellín-Castillo, and Ramiro Pérez. 2024. "Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches" Nanomaterials 14, no. 3: 258. https://doi.org/10.3390/nano14030258
APA StyleRuíz-Baltazar, Á. d. J., Reyes-López, S. Y., Méndez-Lozano, N., Medellín-Castillo, N. A., & Pérez, R. (2024). Sustainable Zeolite–Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches. Nanomaterials, 14(3), 258. https://doi.org/10.3390/nano14030258