Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Bi-GF
2.3. Physicochemical Characterization
2.4. Electrochemical Measurements
2.5. VRFB Performance Test
3. Results
3.1. Structural and Compositional Analyses
3.2. Electrocatalytic Activities of Bi-GF
3.3. Performance of Bi-GF Electrode in VRFBs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, J.; Li, Y.; Wang, Z.; Sun, J.; Yue, Q.; Fan, X.; Zhao, T. Thermal issues of vanadium redox flow batteries. Int. J. Heat Mass Transf. 2023, 203, 123818. [Google Scholar] [CrossRef]
- Schilling, M.; Ershov, A.; Debastiani, R.; Duan, K.; Köble, K.; Scherer, S.; Lan, L.; Rampf, A.; Faragó, T.; Zuber, M.; et al. Bamboo charcoal as electrode material for vanadium redox flow batteries. Energy Adv. 2024, 3, 997–1008. [Google Scholar] [CrossRef]
- Che, H.-x.; Gao, Y.-f.; Yang, J.-h.; Hong, S.; Hao, L.-d.; Xu, L.; Taimoor, S.; Robertson, A.W.; Sun, Z.-y. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries. New Carbon Mater. 2024, 39, 131–141. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Feng, Z.; Jiang, Y.; Dai, L.; Zhu, J.; Liu, Y.; Wang, L.; He, Z. Recent advances and perspectives of practical modifications of vanadium redox flow battery electrodes. Green Chem. 2024, 26, 6339–6360. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, W.; Li, X. Progress and Perspectives of Flow Battery Technologies. Electrochem. Energy Rev. 2019, 2, 492–506. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Lu, S.; Xiang, Y. Titanium Nitride Nanorods Array-Decorated Graphite Felt as Highly Efficient Negative Electrode for Iron–Chromium Redox Flow Battery. Small 2023, 19, 2300943. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Mu, A.; Wu, L.; Wang, H. Vanadium redox flow batteries: Flow field design and flow rate optimization. J. Energy Storage 2022, 45, 103526. [Google Scholar] [CrossRef]
- Huang, Z.; Mu, A.; Wu, L.; Yang, B.; Qian, Y.; Wang, J. Comprehensive Analysis of Critical Issues in All-Vanadium Redox Flow Battery. ACS Sustain. Chem. Eng. 2022, 10, 7786–7810. [Google Scholar] [CrossRef]
- Deng, Q.; HuangYang, X.-Y.; Zhang, X.; Xiao, Z.-H.; Zhou, W.-B.; Wang, H.-R.; Liu, H.-Y.; Zhang, F.; Li, C.-Z.; Wu, X.-W.; et al. Edge-Rich Multidimensional Frame Carbon as High-Performance Electrode Material for Vanadium Redox Flow Batteries. Adv. Energy Mater. 2022, 12, 2103186. [Google Scholar] [CrossRef]
- Maleki, M.; El-Nagar, G.A.; Bernsmeier, D.; Schneider, J.; Roth, C. Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electrospun nanofibrous composite. Sci. Rep. 2020, 10, 11153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xi, J.; Li, Z.; Zhang, Z.; Yu, L.; Liu, L.; Qiu, X.; Chen, L. CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Adv. 2014, 4, 61912–61918. [Google Scholar] [CrossRef]
- Yang, H.; Hung, C.-H.; Wang, S.-P.; Chiang, I.L. Graphite felt with vapor grown carbon fibers as electrodes for vanadium redox flow batteries. Rare Met. 2011, 30, 1–4. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Lu, L.; Zhao, H.; Fu, J.; Shen, Y.; Xu, P.; Dong, Y. PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery. J. Power Sources 2014, 250, 274–278. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Xu, Z.; Zhang, D.; Yu, W.; Zhang, Y.; Liu, L.; Liu, J.; Yan, C. An advanced large-porosity porous channel structure electrode for vanadium redox flow batteries. J. Power Sources 2022, 552, 232241. [Google Scholar] [CrossRef]
- Yoon, S.J.; Kim, S.; Kim, D.K.; Yu, D.M.; Hempelmann, R.; Hong, Y.T.; So, S. Nitrogen-Doping Through Two-Step Pyrolysis of Polyacrylonitrile on Graphite Felts for Vanadium Redox Flow Batteries. Energy Fuels 2020, 34, 5052–5059. [Google Scholar] [CrossRef]
- Lee, M.E.; Jin, H.-J.; Yun, Y.S. Synergistic catalytic effects of oxygen and nitrogen functional groups on active carbon electrodes for all-vanadium redox flow batteries†. RSC Adv. 2017, 7, 43227–43232. [Google Scholar] [CrossRef]
- Suárez, D.J.; González, Z.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Graphite Felt Modified with Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery. ChemSusChem 2014, 7, 914–918. [Google Scholar] [CrossRef]
- Chen, S.; Sun, C.; Zhang, H.; Yu, H.; Wang, W. Electrochemical Deposition of Bismuth on Graphite Felt Electrodes: Influence on Negative Half-Cell Reactions in Vanadium Redox Flow Batteries. Appl. Sci. 2024, 14, 3316. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef]
- Kim, M.; Yang, Z.; Park, J.H.; Yoon, S.M.; Grzybowski, B.A. Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Appl. Nano Mater. 2019, 2, 2725–2733. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Q.; Lv, Y.; Li, Y.; Zhou, X. Binder-free carbon nano-network wrapped carbon felt with optimized heteroatom doping for vanadium redox flow batteries. J. Mater. Chem. A 2019, 7, 25132–25141. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Zhang, S.; Wu, S.; Chen, F.; Xu, J. A comparative study of iron-vanadium and all-vanadium flow battery for large scale energy storage. Chem. Eng. J. 2022, 429, 132403. [Google Scholar] [CrossRef]
- Rashitov, I.; Voropay, A.; Tsepilov, G.; Kuzmin, I.; Loskutov, A.; Osetrov, E.; Kurkin, A.; Lipuzhin, I. Study of 10 kW Vanadium Flow Battery Discharge Characteristics at Different Load Powers. Batteries 2024, 10, 175. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Mo, L.; Zhou, X.; Wu, Q. Densely Populated Bismuth Nanosphere Semi-Embedded Carbon Felt for Ultrahigh-Rate and Stable Vanadium Redox Flow Batteries. Small 2020, 16, 1907333. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, H.; Yang, F.; Zeng, Y.; Liu, X.; Lu, X. Bismuth nanoparticles@carbon composite as a stable and high capacity anode for high-voltage bismuth-manganese batteries. Energy Storage Mater. 2021, 41, 623–630. [Google Scholar] [CrossRef]
- Lee, A.Y.; Yang, K.; Anh, N.D.; Park, C.; Lee, S.M.; Lee, T.G.; Jeong, M.S. Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- Sun, J.; Tu, W.; Chen, C.; Plewa, A.; Ye, H.; Sam Oh, J.A.; He, L.; Wu, T.; Zeng, K.; Lu, L. Chemical Bonding Construction of Reduced Graphene Oxide-Anchored Few-Layer Bismuth Oxychloride for Synergistically Improving Sodium-Ion Storage. Chem. Mater. 2019, 31, 7311–7319. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, G.; Peng, B.; Li, J.; Ding, J.; Zhang, G. Hierarchical Bismuth–Carbon Microfoam Hybrid Structure Achieves Superior Sodium-Ion Storage. ACS Appl. Energy Mater. 2021, 4, 8285–8293. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Choi, J.; Lee, S.; Han, D.; Bae, J.; Park, M. Controllable Carbon Felt Etching by Binary Nickel Bismuth Cluster for Vanadium–Manganese Redox Flow Batteries. ACS Appl. Mater. Interfaces 2023, 15, 37390–37400. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Huang, J.; Chen, J.; Kong, Y.; Yang, B.; Li, Z.; Lei, L.; Chai, G.; Wen, Z.; et al. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites. Angew. Chem. Int. Ed. 2021, 60, 9078–9085. [Google Scholar] [CrossRef]
- Li, Q.; Pei, D.; Zhang, X.; Sun, H. Boosting performance of Ti3C2TX/Bi modified graphite felt electrode for all-vanadium redox flow battery. Electrochim. Acta 2024, 473, 143439. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, Y.; Guo, C.; Qu, F.; Liu, Z.; Zhou, X.; Guo, W.; Xu, C.; Xu, Q. Nitrogen-Doped Bismuth Oxide-Modified Carbon Cloth as a Bifunctional Electrocatalyst for Iron–Chromium Redox Flow Batteries. Energy Fuels 2024, 38, 12202–12211. [Google Scholar] [CrossRef]
- Liu, J.-J.; Zhang, Y.-T.; Cai, H.-Y.; Yang, J. TEMPO and Its Derivatives in Organic Redox-Flow Batteries. Univ. Chem. 2017, 32, 32–44. [Google Scholar] [CrossRef]
- Jäckel, N.; Simon, P.; Gogotsi, Y.; Presser, V. Increase in Capacitance by Subnanometer Pores in Carbon. ACS Energy Lett. 2016, 1, 1262–1265. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, Y.; Li, Z.; Zou, X.; Wu, H.; Lin, S. Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO. J. Colloid Interface Sci. 2021, 586, 528–537. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, X.; Cai, Y.; Su, R.; Zhu, Q.; Zhao, T.; Jiang, H. Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 2024, 69, 103404. [Google Scholar] [CrossRef]
- Liu, X.; Nie, Y.; Yu, L.; Liu, L.; Xi, J. Fine and dense bismuth electrocatalysts achieving high power density and cycling stability in vanadium flow batteries. J. Energy Storage 2024, 91, 112035. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Sun, J.; Guo, Z.; Liu, B.; Fan, X.; Zhao, T. In-situ electrodeposition of homogeneous and dense bismuth nanoparticles onto scale-up graphite felt anodes for vanadium redox flow batteries. J. Power Sources 2023, 586, 233655. [Google Scholar] [CrossRef]
- Fei, X.; Qiang, F.; Feng, X.; Jian, Z.; Haoyang, L.; Tao, L.; Xianfeng, L. Bismuth Single Atoms Regulated Graphite Felt Electrode Boosting High Power Density Vanadium Flow Batteries. J. Am. Chem. Soc. 2024, 146, 26024–26033. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, X.; Huang, S.; Zhou, X. Promoting Pore-Level Mass Transport/Reaction in Flow Batteries: Bi Nanodot/Vertically Standing Carbon Nanosheet Composites on Carbon Fibers. ACS Appl. Mater. Interfaces 2021, 13, 37111–37122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, S.; Zhao, Y.; Li, X.; Zhao, H.; Cheng, L.; Li, R.; Dai, P. Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries. Nanomaterials 2024, 14, 2055. https://doi.org/10.3390/nano14242055
Chen H, Li S, Zhao Y, Li X, Zhao H, Cheng L, Li R, Dai P. Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries. Nanomaterials. 2024; 14(24):2055. https://doi.org/10.3390/nano14242055
Chicago/Turabian StyleChen, Huishan, Sen Li, Yongxin Zhao, Xinyue Li, Hui Zhao, Longzhen Cheng, Renting Li, and Pengcheng Dai. 2024. "Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries" Nanomaterials 14, no. 24: 2055. https://doi.org/10.3390/nano14242055
APA StyleChen, H., Li, S., Zhao, Y., Li, X., Zhao, H., Cheng, L., Li, R., & Dai, P. (2024). Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries. Nanomaterials, 14(24), 2055. https://doi.org/10.3390/nano14242055