pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis and Characterization of Pro@ZnO@Pectin
2.2.1. Synthesis of ZnO
2.2.2. Synthesis of Pro@ZnO@Pectin
2.3. Characterization of Nanomaterials
2.4. Responsive Release of Pro@ZnO@Pectin
2.5. In Vivo Response Behavior of Pro@ZnO@Pectin
2.6. Pro@ZnO@Pectin’s Antibacterial Properties
2.7. Antibacterial Experiment of Filter Paper Using Pro@ZnO@Pectin
2.8. Pro@ZnO@Pectin Induced Morphological Damage to Sclerotinia sclerotiorum
2.9. Wheat Plant Experiment
2.10. In Vitro Tomato Experiment
2.11. Leaf Contact Angle of Pro@ZnO@Pectin
2.12. Biosafety of Pro@ZnO@Pectin
2.13. Soil Mobility of Pro@ZnO@Pectin
2.14. Residue of Pro@ZnO@Pectin on Tomatoes
2.15. Statistical Methods
3. Results and Discussion
3.1. Synthesis and Characterization of PZP and Its pH-Responsive Release
3.2. PZP Nanopesticide Release in Response to the Fungus Sclerotinia sclerotiorum
3.3. Fungicidal Activity and Mechanism of PZP Nanopesticide
3.4. Antibacterial Effect of PZP on Wheat Plants and Detached Fruits Infected with Sclerotinia sclerotiorum
3.5. Wettability, Residue on Tomato Surface and Soil Mobility of PZP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Tang, T.; Lin, Q.; Yu, J.; Zhang, C.; Zhao, X.; Kah, M.; Li, L. Environmental risks and the potential benefits of nanopesticides: A review. Environ. Chem. Lett. 2022, 20, 2097–2108. [Google Scholar] [CrossRef]
- Sharma, S.; Setter, O.P.; Hamad, H.A.; Segal, E. Multifunctional halloysite nanotube–polydopamine agro-carriers for controlling bacterial soft rot disease. Environ. Sci. Nano 2024, 11, 1114–1128. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, C.; Ma, S.; Zou, P.; Ma, J.; Chen, Q.; Zhang, Y.; Ren, T.; Yang, X.; Zhu, H. A Smart Pesticide-Controlled Release Platform with Dual Stimuli-Responsive Functions for Enhanced Treatment of Plant Black Shank. ACS Appl. Mater. Interfaces 2024, 16, 15143–15155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Hu, W.; Hou, R.; Du, P.; Miao, X.; Wang, R.; Wu, H.; Li, S.; Li, Y.; Zhang, Z.; et al. Enhanced fungicidal activity and mechanism of pyraclostrobin nanoparticle with reactive oxygen species responsiveness against Rhizoctonia solani. J. Clean. Prod. 2023, 421, 138494. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, B.; Wu, Z.; Zhang, Q.; Shi, X.; Zhou, C.; Liu, X.; Liu, P.; Liu, X. Fabrication of ROS-responsive nanoparticles by modifying the interior pore-wall of mesoporous silica for smart delivery of azoxystrobin. J. Mater. Chem. B 2023, 11, 11496–11504. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, Z.; Tang, G.; Tian, Y.; Zhang, X.; Huang, Y.; Yan, G.; Liu, Y.; Cao, Y. Facile fabrication of a fungicide and plant immune inducer co-delivery nanosystem for enhanced control efficacy against plant disease. Chem. Eng. J. 2024, 482, 148817. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Guo, Z.; Wang, M.; Qi, C.; Chen, G.; Huang, X.; Yan, S.; Xu, D. Stimuli-responsive pesticide carriers based on porous nanomaterials: A review. Chem. Eng. J. 2023, 455, 140167. [Google Scholar] [CrossRef]
- Xiao, D.; Wu, H.; Zhang, Y.; Kang, J.; Dong, A.; Liang, W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J. Control. Release 2022, 352, 288–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, D.; Xu, G.; Li, X.; Dong, J.; Luan, X.; Du, X. Smart controlled-release avermectin nanopesticides based on metal-organic frameworks with large pores for enhanced insecticidal efficacy. Chem. Eng. J. 2023, 475, 146312. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, Q.; Wu, X.; Yang, C.; Xu, W.; Lin, T.; Liang, Y.; Chen, X. Nanoparticles of Fe3O4 Loaded with Azoxystrobin and Pectin to Enhance Resistance of Rice to Sheath Blight. ACS Appl. Nano Mater. 2024, 7, 2675–2686. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Hassanisaadi, M.; Vatankhah, M.; Varma, R.S.; Thakur, V.K. Nano/micro-structural supramolecular biopolymers: Innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Lett. 2024, 16, 147. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qin, Y.; Li, X.; Yan, B.; Martyniuk, C.J. Comprehensive interrogation of metabolic and bioenergetic responses of early-staged zebrafish (Danio rerio) to a commercial copper hydroxide nanopesticide. Environ. Sci. Technol. 2021, 55, 13033–13044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, P.; Zhou, H.; Hao, L.; Chen, H.; Zhou, X. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides. Chem. Eng. J. 2022, 435, 134861. [Google Scholar] [CrossRef]
- Dong, J.; Chen, W.; Qin, D.; Chen, Y.; Li, J.; Wang, C.; Yu, Y.; Feng, J.; Du, X. Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. J. Hazard. Mater. 2021, 419, 126404. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Zhao, P.; Zhou, Z.; Cao, C.; Li, F.; Huang, Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 2018, 348, 244–254. [Google Scholar] [CrossRef]
- Wang, J.; Lee, J.S.; Kim, D.; Zhu, L. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interfaces 2017, 9, 39971–39984. [Google Scholar] [CrossRef]
- Yang, J.; Gao, Y.; Zhou, Z.; Tang, J.; Tang, G.; Niu, J.; Chen, X.; Tian, Y.; Li, Y.; Cao, Y. A simple and green preparation process for PRO@ PIL-PHS-PEC microcapsules by using phosphonium ionic liquid as a multifunctional additive. Chem. Eng. J. 2021, 424, 130371. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, K.; Liu, S.; Bao, Z.; Zhang, C.; Wu, Y.; Song, R.; Gu, Y.; Gao, Y.; Du, F. Promising nanocarriers endowing non-systemic pesticides with upward translocation ability and microbial community enrichment effects in soil. Chem. Eng. J. 2023, 474, 145570. [Google Scholar] [CrossRef]
- Teng, G.; Chen, C.; Jing, N.; Chen, C.; Duan, Y.; Zhang, L.; Wu, Z.; Zhang, J. Halloysite nanotubes-based composite material with acid/alkali dual pH response and foliar adhesion for smart delivery of hydrophobic pesticide. Chem. Eng. J. 2023, 451, 139052. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Y.; Tang, G.; Tian, Y.; Li, Y.; Wang, H.; Li, X.; Yu, X.; Zhang, Z.; Li, Y.; et al. Facile preparation of pH/pectinase responsive microcapsules based on CaCO3 using fungicidal ionic liquid as a nucleating agent for sustainable plant disease management. Chem. Eng. J. 2022, 446, 137073. [Google Scholar] [CrossRef]
- Monteiro, R.A.; Camara, M.C.; de Oliveira, J.L.; Campos, E.V.R.; Carvalho, L.B.; de Freitas Proenca, P.L.; Guilger-Casagrande, M.; Lima, R.; do Nascimento, J.; Gonçalves, K.C.; et al. Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. J. Hazard. Mater 2021, 417, 126004. [Google Scholar] [CrossRef] [PubMed]
- Attar, S.R.; Shinde, B.; Kamble, S.B. Enhanced catalytic activity of bio-fabricated ZnO NPs prepared by ultrasound-assisted route for the synthesis of tetraketone and benzylidenemalonitrile in hydrotropic aqueous medium. Res. Chem. Intermed. 2020, 46, 4723–4748. [Google Scholar] [CrossRef]
- Huang, M.; Sun, Y.; Tan, C.J. Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll. 2023, 140, 108682. [Google Scholar] [CrossRef]
- Abdelrahman, T.M.; Qin, X.; Li, D.; Senosy, I.A.; Mmby, M.; Wan, H.; Li, J.; He, S. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chem. Eng. J. 2021, 404, 126440. [Google Scholar] [CrossRef]
- Liang, W.; Cheng, J.; Zhang, J.; Xiong, Q.; Jin, M.; Zhao, J. pH-Responsive on-demand alkaloids release from core–shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano 2022, 16, 2762–2773. [Google Scholar] [CrossRef]
- Luo, J.; Gao, Y.; Liu, Y.; Huang, X.; Zhang, D.-x.; Cao, H.; Jing, T.; Liu, F.; Li, B.J. Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment. ACS Nano 2021, 15, 14598–14609. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Lv, S.; Hong, T.; Zhao, Y.; Peng, L.; Sun, L. Carboxymethyl β-cyclodextrin grafted hollow copper sulfide@mesoporous silica carriers for stimuli-responsive pesticide delivery. Colloids Surf. B Biointerfaces 2023, 228, 113425. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yan, C.; Fei, Q.; Zhang, B.; Wu, W. MOF-based stimuli-responsive controlled release nanopesticide: Mini review. Front. Chem. 2023, 11, 1272725. [Google Scholar] [CrossRef]
- Sun, L.; Hou, C.; Wei, N.; Tan, Y.; Liang, Q.; Feng, J. pH/cellulase dual environmentally responsive nano-metal organic frameworks for targeted delivery of pesticides and improved biosafety. Chem. Eng. J. 2023, 478, 147294. [Google Scholar] [CrossRef]
- Tao, R.; You, C.; Qu, Q.; Zhang, X.; Deng, Y.; Ma, W.; Huang, C. Recent advances in the design of controlled-and sustained-release micro/nanocarriers of pesticide. Environ. Sci. Nano 2023, 10, 351–371. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Zheng, Q.; Luo, P.; Yan, W.; Huang, S.; Cheng, D.; Xu, H.; Zhang, Z. A β-cyclodextrin-functionalized metal–organic framework enhances the insecticidal activity of indoxacarb by affecting amino acid metabolism in red imported fire ants. Chem. Eng. J. 2023, 458, 141417. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, J.; Sun, L.; Chen, W.; Li, X.; Wang, C.; Feng, J.; Du, X. Multidimensional stimuli-responsive and degradable pesticide nanocapsules through on site coordination assembly for enhanced pest and pathogen control. ACS Sustain. Chem. Eng. 2023, 11, 12809–12820. [Google Scholar] [CrossRef]
- Wen, S.-H.; Zhang, H.; Yu, S.; Ma, J.; Zhu, J.-J.; Zhou, Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@ MnO2 Composite. Anal. Chem. 2023, 95, 14914–14924. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, J.; Zhou, Z.; Tang, G.; Yan, G.; Liu, Y.; Wang, J.; Hu, G.; Xiao, J.; Yan, W. Stimuli-responsive polymeric micelles based on cellulose derivative containing imine groups with improved bioavailability and reduced aquatic toxicity of pyraclostrobin. Chem. Eng. J. 2023, 474, 145789. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Wu, M.; Qian, X.; Lin, D.; Zhang, H.; Tang, J.; Zeng, T.; Yao, W.; Filser, J.; et al. Potential environmental risks of nanopesticides: Application of Cu(OH)2 nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environ. Int. 2019, 129, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Z.; Kah, M.; Lin, D.; Filser, J. Nanopesticides: A comprehensive assessment of environmental risk is needed before widespread agricultural application. Environ. Sci. Technol. 2019, 53, 7923–7924. [Google Scholar] [CrossRef]
- Grillo, R.; Fraceto, L.F.; Amorim, M.J.; Scott-Fordsmand, J.J.; Schoonjans, R.; Chaudhry, Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J. Hazard. Mater. 2021, 404, 124148. [Google Scholar] [CrossRef] [PubMed]
- Del Prado-Audelo, M.L.; Bernal-Chávez, S.A.; Gutiérrez-Ruíz, S.C.; Hernández-Parra, H.; Kerdan, I.G.; Reyna-González, J.M.; Sharifi-Rad, J.; Leyva-Gómez, G. Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. Oxidative Med. Cellilar Longev. 2022, 2022, 5766199. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, S.O.; Saglam, O.; Isikber, A.A.; Bozkurt, H.; Unal, H. Pesticide Nanoformulations Based on Sunlight-Activated Controlled Release of Abamectin. ACS Omega 2024, 9, 10380–10390. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ma, N.; He, L.; Xu, P.; Wang, F.; You, C. High deposition and precise stimulus-response release performance of lignin-coated dendritic mesoporous organosilica nanoparticles for efficient pesticide utilization. Int. J. Biol. Macromol. 2024, 259, 129163. [Google Scholar] [CrossRef] [PubMed]
- Eghbalinejad, M.; Hofman, J.; Kotouček, J.; Grillo, R.; Hochmanová Bílková, Z.; Reiff, N.; Höss, S. Nano-enabled pesticides: A comprehensive toxicity assessment of tebuconazole nanoformulations with nematodes at single species and community level. Environ. Sci. Eur. 2024, 36, 1–16. [Google Scholar] [CrossRef]
- Lu, S.; Liang, B.; Hu, J.; Liu, Y.; Yang, F.; Liu, J. Multidimensional response of dopamine nano-systemfor on-demand fungicides delivery: Reduced toxicity and synergistic antibacterial effects. Chem. Eng. J. 2024, 482, 148990. [Google Scholar] [CrossRef]
- Cao, P.; Cai, Y.; Pawar, D.; Navale, S.; Rao, C.N.; Han, S.; Xu, W.; Fang, M.; Liu, X.; Zeng, Y. Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors. Chem. Eng. J. 2020, 401, 125491. [Google Scholar] [CrossRef]
- Ahmad, M.; Chen, S.; Ye, F.; Quan, X.; Afzal, S.; Yu, H.; Zhao, X. Efficient photo-Fenton activity in mesoporous MIL-100 (Fe) decorated with ZnO nanosphere for pollutants degradation. Appl. Catal. B Environ. Energy 2019, 245, 428–438. [Google Scholar] [CrossRef]
- Cui, B.; Li, J.; Lai, Z.; Gao, F.; Zeng, Z.; Zhao, X.; Liu, G.; Cui, H. Emamectin benzoate-loaded zein nanoparticles produced by antisolvent precipitation method. Polym. Test. 2021, 94, 107020. [Google Scholar] [CrossRef]
- Wang, C.Y.; Yang, J.; Qin, J.C.; Yang, Y.W. Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv. Sci. 2021, 8, 2004525. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Jia, C.; Zhang, M.Z.; Yang, S.; Qin, J.C.; Yang, Y.W. A Lesion Microenvironment-Responsive Fungicide Nanoplatform for Crop Disease Prevention and Control. Adv. Healthc. Mater. 2022, 11, 2102617. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, Y.; Zhao, X.; Zeng, Z.; Cui, B.; Shen, Y.; Gao, F.; Cui, H. Properties of Avermectin Delivery System Using Surfactant-Modified Mesoporous Activated Carbon as a Carrier. J. Nanomater. 2018, 2018, 3038902. [Google Scholar] [CrossRef]
- Xiao, D.; Cheng, J.; Liang, W.; Sun, L.; Zhao, J. Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery. Chem. Eng. J. 2021, 418, 129274. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Qin, X.; Guo, Z.; Li, D.; Li, C.; Wan, H.; Zhu, F.; Li, J.; Zhang, Z. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles. J. Hazard. Mater. 2021, 414, 125513. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liang, Y.; Dong, H.; Niu, J.; Tang, J.; Yang, J.; Tang, G.; Zhou, Z.; Tang, R.; Shi, X. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence. ACS Sustain. Chem. Eng. 2020, 8, 5716–5723. [Google Scholar] [CrossRef]
- Yan, G.; Feng, Y.; Gao, Z.; Zeng, X.; Hong, W.; Liu, W.; Sun, Y.; Tang, X.; Lei, T.; Lin, L. Stable and biocompatible cellulose-based CaCO3 microspheres for tunable pH-responsive drug delivery. ACS Sustain. Chem. Eng. 2019, 7, 19824–19831. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Zhou, M.; Qian, H.; Hu, X. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B Environ. 2012, 125, 425–431. [Google Scholar] [CrossRef]
- Suciu, C.; Hoffmann, A.; Vik, A.; Goga, F. Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route. Chem. Eng. J. 2008, 138, 608–615. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Tang, G.; Zhou, Z.; Zhang, X.; Liu, Y.; Yan, G.; Wang, J.; Hu, G.; Xiao, J. Fabrication of pH-responsive nanoparticles for co-delivery of fungicide and salicylic acid with synergistic antifungal activity. J. Clean. Prod. 2024, 451, 142093. [Google Scholar] [CrossRef]
- Hu, Z.; Shu, C.; Wang, M.; Yang, T.; Pei, H.; Wang, T.; Sun, S.; Zhang, F. Eco-friendly pH-responsive iron-doped insect larval frass extract as a hexaconazole nano-delivery system for controlling fungal disease and promoting crop growth. Chem. Eng. J. 2024, 494, 153025. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Yin, B.-C.; Zhang, W.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf. B Biointerfaces 2009, 68, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chen, W.; Feng, J.; Liu, X.; Xu, Y.; Wang, C.; Yang, W.; Du, X. Facile, smart, and degradable metal–organic framework nanopesticides gated with FeIII-tannic acid networks in response to seven biological and environmental stimuli. ACS Appl. Mater. Interfaces 2021, 13, 19507–19520. [Google Scholar] [CrossRef]
- Gan, W.; Kong, X.; Fang, J.; Shi, X.; Zhang, S.; Li, Y.; Qu, L.; Liu, F.; Zhang, Z.; Zhang, F. A pH-responsive fluorescent nanopesticide for selective delivery and visualization in pine wood nematode control. Chem. Eng. J. 2023, 463, 142353. [Google Scholar] [CrossRef]
- Ding, Y.; Xiao, Z.; Chen, F.; Yue, L.; Wang, C.; Fan, N.; Ji, H.; Wang, Z. A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: Effectively manage aphids and reduce plant pesticide residue. Sci. Total Environ. 2023, 863, 160900. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, K.; Yu, F.; Shen, L.; Wang, F.; Yang, J.; Su, C. Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease. J. Nanobiotechnol. 2022, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hai, D.; Li, J.; Jiang, D.; Cheng, J.; Fu, Y.; Xiao, X.; Yin, H.; Lin, Y.; Chen, T.; Li, B. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat. Commun. 2024, 15, 4748. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Tan, R.; Zhang, S.; Collins, P.J.; Yuan, J.; Du, W.; Gu, C.; Ou, S.; Song, Q.; An, Y.Q.C. Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol. J. 2018, 16, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, Q.; Lu, Y.; Cai, Q.; Hu, J.; Lv, Y.; Yang, Y.; Wang, L.; Zhou, Y.; Liu, J. pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks. Nanomaterials 2024, 14, 2022. https://doi.org/10.3390/nano14242022
Mai Q, Lu Y, Cai Q, Hu J, Lv Y, Yang Y, Wang L, Zhou Y, Liu J. pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks. Nanomaterials. 2024; 14(24):2022. https://doi.org/10.3390/nano14242022
Chicago/Turabian StyleMai, Qiongmei, Yu Lu, Qianyu Cai, Jianglong Hu, Yunyou Lv, Yonglan Yang, Liqiang Wang, Yuezhao Zhou, and Jie Liu. 2024. "pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks" Nanomaterials 14, no. 24: 2022. https://doi.org/10.3390/nano14242022
APA StyleMai, Q., Lu, Y., Cai, Q., Hu, J., Lv, Y., Yang, Y., Wang, L., Zhou, Y., & Liu, J. (2024). pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks. Nanomaterials, 14(24), 2022. https://doi.org/10.3390/nano14242022