Miraculous Al/PDF Composites Using NF2 to Enhance the Energy Release of Al, Prepared Through an Efficient Method
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Pretreatment of Al Powder
2.3. Preparation of Al/PDF Composites
2.4. Characterizations and Measurements
3. Result and Discussion
3.1. Structure and Morphology of Al/PDF
3.2. Characteristics of Al/PDF Composites
3.3. The Catalytic Effect of Al/PDF on AP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jung, S.H.; Kim, K.T.; Bae, J.; Choi, Y.J.; Kim, J.M.; Sun, J.Y. Increased exothermic reactivity of polytetrafluoroethylene-coated aluminum powders: Impact of powder size reduction. Mater. Lett. 2023, 351, 135009. [Google Scholar] [CrossRef]
- Yun, L.; Wang, Y.; Zhu, B.; Sun, Y. Oxidation and combustion studies of polyacrylamide constructed high energy aluminum-based reactive fuel. Combust. Flame 2023, 251, 112580. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Cohen, O.; Michaels, D.; Yavor, Y. Agglomeration in Composite Propellants Containing Different Nano-Aluminum Powders. Propellants Explos. Pyrotech. 2022, 47, e202100320. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Z.; Liang, T.; Yang, R.; Li, J.; Luo, P. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): Improving the ignition and combustion properties of aluminum. Chem. Eng. J. 2021, 420, 130523. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, H.; Liu, W.; Zhang, J.; Liang, T.; Hu, J.; Zhang, Y.; Luo, P. Enhanced combustion performance of core-shell aluminum with poly(vinylidene fluoride) interfacial layer: Constructing the combination bridge of aluminum powder and poly(vinylidene fluoride). Surf. Coat. Technol. 2022, 439, 128410. [Google Scholar] [CrossRef]
- Tanga, D.; Chena, S.; Liub, X.; Hea, W.; Yangc, G.; Liua, P.J.; Gozind, M.; Yana, Q.L. Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer. Chem. Eng. J. 2019, 381, 122747. [Google Scholar] [CrossRef]
- Weeks, N.J.; Gazmin, E.; Iacono, S.T. Optimizing the Interfaces of Energetic Textiles with Perfluorinated Oligomer-Coated Aluminum Nanoparticles: Implications for Metastable Intermolecular Composites. ACS Appl. Nano Mater. 2021, 4, 6002–6011. [Google Scholar] [CrossRef]
- Liang, L.; Guo, X.; Liao, X.; Chang, Z. Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine. Appl. Surf. Sci. 2020, 508, 144790. [Google Scholar] [CrossRef]
- Wang, H.X.; Ren, H.; Cui, Q.; Yan, T.; Li, Y.R. Energy release prediction and structure characterization of nano aluminum powder in situ coated by polyethylene glycol. Ferroelectrics 2020, 563, 161–176. [Google Scholar]
- Zhang, L.; Li, X.; Wang, S.; Su, X. Meishuai Zou1Facile energetic fluoride chemistry induced organically coated aluminum powder with effectively improved ignition and combustion performances. J. Therm. Anal. Calorim. 2023, 148, 5957–5966. [Google Scholar] [CrossRef]
- Xiao, F.; Liang, T. Preparation of hierarchical core-shell Al-PTFE@TA and Al-PTFE@TA-Fe architecture for improving the combustion and ignition properties of aluminum. Surf. Coat. Technol. 2021, 412, 127073. [Google Scholar] [CrossRef]
- Hao, D.; Hu, Y.; Wang, F.; Xia, D.; Wang, D.; Fan, R.; Yang, Y.; Lin, K. Core-shell structured nAl@F-x nanocomposite: Preparation and their improved combustion performances. J. Energetic Mater. 2022, 40, 61–81. [Google Scholar] [CrossRef]
- Wang, J.; Qu, Y.; Gong, F.; Shen, J.; Zhang, L. A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combust. Flame 2019, 204, 220–226. [Google Scholar] [CrossRef]
- Li, G.; Xu, H.; Ma, Y.; Wu, Y.; Chen, L.; An, Y.; Zhou, H.; Chen, J. A dense structure constructed by flake and spherical aluminum: Simultaneously enhanced anti-wear and anti-corrosion properties of epoxy/polytetrafluoroethylene composite coatings. J. Appl. Polym. Sci. 2022, 139, e52865. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.T.; Lee, D.U.; Jung, S.H.; Yang, D.Y.; Yu, J. Influence of Poly(vinylidene fluoride) Coating Layer on Exothermic Reactivity and Stability of Fine Aluminum Particles. Appl. Surf. Sci. 2021, 551, 149431. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Su, X.; Li, X.; Zou, M. Preparation and characterization of core-shell Al@PFHP with improving the combustion and ignition properties of aluminum powder. Particuology 2023, 77, 62–70. [Google Scholar] [CrossRef]
- Li, Y.; Hang, S.; Li, J.; Guo, W.; Xiao, W.; Han, Z.; Wang, B. Study on the preparation parameters and combustion performance of Al/PTFE composites prepared by a mechanical activation-sintering method. New J. Chem. 2020, 44, 21092. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Zhang, H.; Wang, X.; Lu, T.; Liang, J.; Yang, Y.; Lin, K.; Xia, D. Polyphenols-inspired interface modification and reduced agglomeration of solid propellants via a functionalized fluorine-containing organic substance coating layer. Surf. Coat. Technol. 2024, 477, 130277. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, J.; He, G.; Huang, C.; Yang, Z.; Liu, S.; Gong, F. Enhanced water resistance and energy performance of core-shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J. Mater. Sci. 2018, 53, 12091–12102. [Google Scholar] [CrossRef]
- Zhang, L.; Su, X.; Wang, S.; Li, X.; Zou, M. In situ preparation of Al@3-Perfluorohexyl-1, 2-epoxypropane@glycidyl azide polymer (Al@PFHP@GAP) high-energy material. Chem. Eng. J. 2022, 450, 137118. [Google Scholar] [CrossRef]
- Vorozhtsov; Lerner, M.; Rodkevich, N.; Sokolov, S.; Perchatkina, E.; Paravan, C. Preparation and Characterization of Al/HTPB Composite for High Energetic Materials. Nanomaterials 2020, 10, 2222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, S.; Zhu, L.; Li, X.; Su, X.; Zou, M. Energetic and Protective Coating via Chemical and Physical Synergism for High Water-Reactive Aluminum Powder. Materials 2022, 15, 8554. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Y.; Li, Y.; Pang, S. Reagents leading to difluoramino (NF2) products. J. Fluor. Chem. 2018, 205, 35–42. [Google Scholar] [CrossRef]
- Kuo, K.K.; Young, G. Characterization of combustion behavior of newly formulated NF2-based solid propellants. Proc. Combust. Inst. 2002, 29, 2947–2954. [Google Scholar] [CrossRef]
- Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal decomposition and kinetics studies on poly(BDFAO/THF), poly(DFAMO/THF), and poly(BDFAO/DFAMO/THF). J. Therm. Anal. Calorim. 2014, 118, 189–196. [Google Scholar] [CrossRef]
- Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal Decomposition, Kinetics and Compatibility Studies of Poly(3-difluoroaminomethyl-3-methyloxetane) (PDFAMO). Propellants Explos. Pyrotech. 2014, 39, 819–829. [Google Scholar] [CrossRef]
- Li, H.; Pan, J.; Wang, W.; Pan, R.; Zhu, W. Preparation, characterization and compatibility studies of poly(DFAMO/AMMO). J. Macromol. Sci. A 2018, 55, 135–141. [Google Scholar] [CrossRef]
- He, J.; Lv, J.; Li, Y.; Zheng, W.; Pan, R. Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics. Nanomaterials 2024, 14, 1772. [Google Scholar] [CrossRef]
- Nie, H.; Yang, S.L.; Yan, Q.L. Enhancement in ignition and combustion of solid propellants by interfacial modification of Al/AP composites with transition metals. Combust. Flame 2023, 256, 112968. [Google Scholar] [CrossRef]
- Lee, W.Q.; Polance, R.G.; Hussain, N.; Shaffer, C.J.; Reyes, R.D. Functional coatings via isocyanate-cured phenolics for anti-graffiti and via benzoxazines for high-temperature and high-pressure (HTHP) applications. Prog. Org. Coat. 2021, 151, 106094. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.; Choe, J.; Byun, Y.C.; Seo, J.H.; Kim, D.H. Fabrication of electrically conductive nickel-silver bimetallic particles via polydopamine coating. J. Nanosci. Nanotechnol. 2013, 13, 7600–7609. [Google Scholar] [CrossRef] [PubMed]
- Solomun, T.; Schimanski, A.; Sturm, H.; Illenberger, E. Efficient formation of difluoramino functionalities by direct fluorination of polyamides. Macromolecules 2005, 38, 4231–4236. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Gao, B.; Zhang, L.; Kang, L.; Zhang, K. Property and characterization of 3,3-bis(difluoroaminomethyl) oxetane. Chin. J. Energetic Mater. 2012, 20, 314–318. [Google Scholar]
- Yang, D.; Huang, S.; Ruan, M.; Li, S.; Yang, J.; Wu, Y.; Guo, W.; Zhang, L. Mussel inspired modification for aluminum oxide/silicone elastomer composites with largely improved thermal conductivity and low dielectric constant. Ind. Eng. Chem. Res. 2018, 57, 3255–3262. [Google Scholar] [CrossRef]
- He, W.; Liu, P.J.; Gong, F.; Tao, B.; Gu, J.; Yang, Z.; Yan, Q.L. Tuning the Reactivity of Metastable Intermixed Composite n-Al/PTFE by Polydopamine Interfacial Control. ACS. Appl. Mater. Interfaces 2018, 10, 32849–32858. [Google Scholar] [CrossRef]
- Gouget-Laemmel, C.; Yang, J.; Lodhi, M.A.; Siriwardena, A.; Aureau, D.; Boukherroub, R.; Chazalviel, J.N.; Ozanam, F.; Szunerits, S. Functionalization of Azide-Terminated Silicon Surfaces with Glycans Using Click Chemistry: XPS and FTIR Study. J. Phys. Chem. C 2013, 117, 368–375. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Lai, S.; Jiang, C.; Zhong, H. Enhancing Photocatalytic Degradation of Phenol through Nitrogen- and Nitrogen/Fluorine-Codoped Ti-SBA-15. Rsc. Adv. 2015, 5, 53299–53305. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Hao, H.; Xu, S.; Li, H.; Liu, H.; Zheng, W.; Pan, R. DFAMO/BAMO copolymer as a potential energetic binder: Thermal decomposition study. Thermochim. Acta 2018, 661, 1–6. [Google Scholar] [CrossRef]
- Reshmi, S.; Ganesan, M.; Soumyamol, P.B.; Thomas, D.; Athmaja, D.V. Silicone bridged iron metallocene butadiene composite solid propellant binder: Aspects of thermal decomposition kinetics, pyrolysis and propellant burning rate. J. Energetic Mater. 2019, 37, 12–28. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Chen, L.; Liu, P.; Jia, L.; Dong, B.; Li, H.; Xu, S. A study on the decomposition pathways of HTPB and HTPE pyrolysis by mass spectrometric analysis. J. Aanal. Appl. Pyrol. 2023, 170, 105929. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Zhang, L.; Yuan, J.; Song, M.; Liu, H. Composition of solid and gaseous primary combustion products of boron-based fuel-rich propellant. Acta Astronaut. 2021, 188, 36–48. [Google Scholar] [CrossRef]
- Pang, W.Q.; DeLuca, L.; Fan, X.Z.; Glotov, O.; Wang, K.; Qin, Z.; Zhao, F.Q. Combustion behavior of AP/HTPB/Al composite propellant containing hydroborate iron compound. Combust. Flame 2020, 220, 157–167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Lv, J.; Zheng, W.; Pan, R.; Li, Y. Miraculous Al/PDF Composites Using NF2 to Enhance the Energy Release of Al, Prepared Through an Efficient Method. Nanomaterials 2024, 14, 1980. https://doi.org/10.3390/nano14241980
He J, Lv J, Zheng W, Pan R, Li Y. Miraculous Al/PDF Composites Using NF2 to Enhance the Energy Release of Al, Prepared Through an Efficient Method. Nanomaterials. 2024; 14(24):1980. https://doi.org/10.3390/nano14241980
Chicago/Turabian StyleHe, Junqi, Jing Lv, Wenfang Zheng, Renming Pan, and Yanan Li. 2024. "Miraculous Al/PDF Composites Using NF2 to Enhance the Energy Release of Al, Prepared Through an Efficient Method" Nanomaterials 14, no. 24: 1980. https://doi.org/10.3390/nano14241980
APA StyleHe, J., Lv, J., Zheng, W., Pan, R., & Li, Y. (2024). Miraculous Al/PDF Composites Using NF2 to Enhance the Energy Release of Al, Prepared Through an Efficient Method. Nanomaterials, 14(24), 1980. https://doi.org/10.3390/nano14241980