Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Donor Substrate Preparation
2.3. Receiver Substrate Preparation
2.4. Laser-Induced Forward Transfer
2.5. Morphology Analysis
2.6. X-Ray Photoelectron Spectroscopy (XPS) Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryu, J.E.; Park, S.; Park, Y.; Ryu, S.W.; Hwang, K.; Jang, H.W. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater. 2023, 35, 2204947. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.R.; Sajjad, M.T.; Johar, M.A.; Hernández-Gutiérrez, C.A.; Usman, M.; Łepkowski, S. Recent progress in micro-LED-based display technologies. Laser Photonics Rev. 2022, 16, 2100427. [Google Scholar] [CrossRef]
- Chen, F.; Bian, J.; Hu, J.; Sun, N.; Yang, B.; Ling, H.; Yu, H.; Wang, K.; Gai, M.; Ma, Y. Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extrem. Manuf. 2022, 4, 042005. [Google Scholar] [CrossRef]
- Lee, D.; Cho, S.; Park, C.; Park, K.R.; Lee, J.; Nam, J.; Ahn, K.; Park, C.; Jeon, K.; Yuh, H. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 2023, 619, 755–760. [Google Scholar] [CrossRef]
- Lu, H.; Guo, W.; Su, C.; Li, X.; Lu, Y.; Chen, Z.; Zhu, L. Optimization on adhesive stamp Mass-transfer of micro-LEDs with support vector machine model. IEEE J. Electron. Devices Soc. 2020, 8, 554–558. [Google Scholar] [CrossRef]
- Serra, P.; Piqué, A. Laser-induced forward transfer: Fundamentals and applications. Adv. Mater. Technol. 2019, 4, 1800099. [Google Scholar] [CrossRef]
- Goodfriend, N.T.; Heng, S.Y.; Nerushev, O.A.; Gromov, A.V.; Bulgakov, A.V.; Okada, M.; Xu, W.; Kitaura, R.; Warner, J.; Shinohara, H. Blister-based-laser-induced-forward-transfer: A non-contact, dry laser-based transfer method for nanomaterials. Nanotechnology 2018, 29, 385301. [Google Scholar] [CrossRef]
- Moreno-Labella, J.; Munoz-Martin, D.; Marquez, A.; Morales, M.; Molpeceres, C. Simulation of direct and blister-assisted laser-induced forward transfer techniques. Procedia CIRP 2020, 94, 873–878. [Google Scholar] [CrossRef]
- Marinov, V.R. 52-4: Laser-Enabled Extremely-High Rate Technology for µLED Assembly. In Proceedings of the SID Symposium Digest of Technical Papers, Los Angeles, CA, USA, 20–25 May 2018; pp. 692–695. [Google Scholar]
- Lan, K.; Deng, Y.; Huang, A.; Li, S.-Q.; Liu, G.; Xie, H.-L. Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation. Polymer 2022, 256, 125177. [Google Scholar] [CrossRef]
- Chen, S.-C.; Lin, Y.-C.; Wu, J.-C.; Horng, L.; Cheng, C. Parameter optimization for an ICP deep silicon etching system. Microsyst. Technol. 2007, 13, 465–474. [Google Scholar] [CrossRef]
- Park, J.K.; Zhang, Y.; Xu, B.; Kim, S. Pattern transfer of large-scale thin membranes with controllable self-delamination interface for integrated functional systems. Nat. Commun. 2021, 12, 6882. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Moon, B.-U.; Hidrovo, C.H. Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. J. Micromech. Microeng. 2013, 23, 095024. [Google Scholar] [CrossRef]
- Schneider, F.; Draheim, J.; Kamberger, R.; Wallrabe, U. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens. Actuators A 2009, 151, 95–99. [Google Scholar] [CrossRef]
- Papavlu, A.P.; Lippert, T. LIFT Using a Dynamic Release Layer. In Laser Printing of Functional Materials; Wiley: Hoboken, NJ, USA, 2018; pp. 37–61. [Google Scholar]
- Lippert, T. UV laser ablation of polymers: From structuring to thin film deposition. In Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties; Springer: Berlin/Heidelberg, Germany, 2009; pp. 141–175. [Google Scholar]
- Lippert, T.; David, C.; Dickinson, J.; Hauer, M.; Kogelschatz, U.; Langford, S.; Nuyken, O.; Phipps, C.; Robert, J.; Wokaun, A. Structure property relations of photoreactive polymers designed for laser ablation. J. Photochem. Photobiol. A 2001, 145, 145–157. [Google Scholar] [CrossRef]
- Hecht, L.; Rager, K.; Davidonis, M.; Weber, P.; Gauglitz, G.; Dietzel, A. Blister-actuated LIFT printing for multiparametric functionalization of paper-like biosensors. Micromachines 2019, 10, 221. [Google Scholar] [CrossRef]
- Dong, Z.; He, Q.; Shen, D.; Gong, Z.; Zhang, D.; Zhang, W.; Ono, T.; Jiang, Y. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsyst. Nanoeng. 2023, 9, 31. [Google Scholar] [CrossRef]
- Ortelli, E.; Geiger, F.; Lippert, T.; Wei, J.; Wokaun, A. UV-laser-induced decomposition of Kapton studied by infrared spectroscopy. Macromolecules 2000, 33, 5090–5097. [Google Scholar] [CrossRef]
- Jing, P.; Zhou, X.; Xu, Z.; Xu, Z. Numerical and experimental investigation on photothermal performance of polyimide/high-electrical-performance-coating composite films considering surface roughness. J. Therm. Sci. 2022, 31, 1206–1219. [Google Scholar] [CrossRef]
- Bian, J.; Chen, F.; Ling, H.; Sun, N.; Hu, J.; Huang, Y. Experimental and modeling study of controllable laser lift-off via low-fluence multiscanning of polyimide-substrate interface. Int. J. Heat Mass Transf. 2022, 188, 122609. [Google Scholar] [CrossRef]
- Yung, K.C.; Zeng, D.; Yue, T.M. XPS investigation of Upilex-S polyimide ablated by 355 nm Nd: YAG laser irradiation. Appl. Surf. Sci. 2001, 173, 193–202. [Google Scholar] [CrossRef]
- Yusupov, V.; Churbanov, S.; Churbanova, E.; Bardakova, K.; Antoshin, A.; Evlashin, S.; Timashev, P.; Minaev, N. Laser-induced forward transfer hydrogel printing: A defined route for highly controlled process. Int. J. Bioprinting 2020, 6, 271. [Google Scholar] [CrossRef] [PubMed]
- Bityurin, N.; Luk’Yanchuk, B.; Hong, M.; Chong, T. Models for laser ablation of polymers. Chem. Rev. 2003, 103, 519–552. [Google Scholar] [CrossRef] [PubMed]
- Metayer, P.; Davenas, J.; Bureau, J. Ablation and carbon deposition induced by UV laser irradiation of polyimide: Application to the metallization of VIAs in high density printed circuit boards. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 185, 156–162. [Google Scholar] [CrossRef]
- Chang, J.; Sun, X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front. Bioeng. Biotechnol. 2023, 11, 1255782. [Google Scholar] [CrossRef]
- Godfrey, A.T.; Kallepalli, D.L.; Ratté, J.; Zhang, C.; Corkum, P. Femtosecond-laser-induced nanoscale blisters in polyimide thin films through nonlinear absorption. Phys. Rev. Appl. 2020, 14, 044057. [Google Scholar] [CrossRef]
- Hong, J. Thermo-mechanical analysis of blister formation on a rigid substrate in blister-actuated laser-induced forward transfer. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 10, 637–643. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, C.; Rong, Y.; Li, M.; Huang, Y.; Zhang, G. Laser ablation behavior and mechanism of polyimide by UV irradiation. Mater. Manuf. Process. 2022, 37, 809–815. [Google Scholar] [CrossRef]
- Brown, M.S.; Kattamis, N.T.; Arnold, C.B. Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J. Appl. Phys. 2010, 107, 083103. [Google Scholar] [CrossRef]
- Fardel, R.; Nagel, M.; Nüesch, F.; Lippert, T.; Wokaun, A. Laser forward transfer using a sacrificial layer: Influence of the material properties. Appl. Surf. Sci. 2007, 254, 1322–1326. [Google Scholar] [CrossRef]
- Marinov, V.R.; Swenson, O.; Atanasov, Y.; Schneck, N. Laser-assisted ultrathin die packaging: Insights from a process study. Microelectron. Eng. 2013, 101, 23–30. [Google Scholar] [CrossRef]
- Kattamis, N.T.; Brown, M.S.; Arnold, C.B. Finite element analysis of blister formation in laser-induced forward transfer. J. Mater. Res. 2011, 26, 2438–2449. [Google Scholar] [CrossRef]
- Bornemann, S.; Yulianto, N.; Spende, H.; Herbani, Y.; Prades, J.D.; Wasisto, H.S.; Waag, A. Femtosecond Laser Lift-Off with Sub-Bandgap Excitation for Production of Free-Standing GaN Light-Emitting Diode Chips. Adv. Eng. Mater. 2020, 22, 1901192. [Google Scholar] [CrossRef]
- Li, Q.; Grojo, D.; Alloncle, A.-P.; Delaporte, P. Jetting regimes of double-pulse laser-induced forward transfer. Opt. Mater. Express 2019, 9, 3476–3486. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Xu, J.; Yao, Z. A coupling model to simulate the dynamic process of blister-actuated nanosecond laser-induced forward transfer. J. Phys. D 2017, 50, 325305. [Google Scholar] [CrossRef]
- Shaw-Stewart, J.; Lippert, T.; Nagel, M.; Nüesch, F.; Wokaun, A. A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer. Appl. Surf. Sci. 2012, 258, 9309–9313. [Google Scholar] [CrossRef]
- Smits, E.C.; Walter, A.; De Leeuw, D.M.; Asadi, K. Laser induced forward transfer of graphene. Appl. Phys. Lett. 2017, 111, 173101. [Google Scholar] [CrossRef]
- Pohl, R.; Jansink, M.; Römer, G.; Huis in ‘t Veld, A. Solid-phase laser-induced forward transfer of variable shapes using a liquid-crystal spatial light modulator. Appl. Phys. A 2015, 120, 427–434. [Google Scholar] [CrossRef]
- Araki, T.; den Toonder, J.M.; Suganuma, K.; Uemura, T.; Noda, Y.; Yoshimoto, S.; Izumi, S.; Sekitani, T. Non-contact laser printing of ag nanowire-based electrode with photodegradable polymers. J. Photopolym. Sci. Technol. 2019, 32, 429–434. [Google Scholar] [CrossRef]
- Vogel, A.; Lorenz, K.; Horneffer, V.; Hüttmann, G.; Von Smolinski, D.; Gebert, A. Mechanisms of laser-induced dissection and transport of histologic specimens. Biophys. J. 2007, 93, 4481–4500. [Google Scholar] [CrossRef]
- Daissè, G.; Marcon, M.; Zecchini, M.; Wan-Wendner, R. Cure-dependent loading rate effects on strength and stiffness of particle-reinforced thermoset polymers. Polymer 2022, 259, 125326. [Google Scholar] [CrossRef]
- Weidmann, G.; Ogorkiewicz, R. Effects of time, temperature and curing on the stiffness of epoxy laminating systems. J. Mater. Sci. 1974, 9, 1670–1680. [Google Scholar] [CrossRef]
- Sano, T.; Yamada, H.; Nakayama, T.; Miyamoto, I. Experimental investigation of laser induced forward transfer process of metal thin films. Appl. Surf. Sci. 2002, 186, 221–226. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Ryu, S.; Bae, S.; Lee, M.W.; Kim, T.-W.; Bae, J.-S.; Park, J.; Lee, S.-K. Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer. Nanomaterials 2024, 14, 1926. https://doi.org/10.3390/nano14231926
Kim D, Ryu S, Bae S, Lee MW, Kim T-W, Bae J-S, Park J, Lee S-K. Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer. Nanomaterials. 2024; 14(23):1926. https://doi.org/10.3390/nano14231926
Chicago/Turabian StyleKim, DoYoung, Seong Ryu, Sukang Bae, Min Wook Lee, Tae-Wook Kim, Jong-Seong Bae, Jiwon Park, and Seoung-Ki Lee. 2024. "Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer" Nanomaterials 14, no. 23: 1926. https://doi.org/10.3390/nano14231926
APA StyleKim, D., Ryu, S., Bae, S., Lee, M. W., Kim, T.-W., Bae, J.-S., Park, J., & Lee, S.-K. (2024). Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer. Nanomaterials, 14(23), 1926. https://doi.org/10.3390/nano14231926