M-Doped (M = Zn, Mn, Ni) Co-MOF-Derived Transition Metal Oxide Nanosheets on Carbon Fibers for Energy Storage Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TMO Synthesis on Carbon Fiber Fabric
2.3. Material Characterization
2.4. Supercapacitor Electrode Characterization
2.5. Li-Ion Battery Anode Characterization
3. Results
3.1. Coating Characterization
3.2. Characterization as Supercapacitor Electrode
3.3. Characterization as Li-Ion Battery Anode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Danzi, F.; Salgado, R.M.; Oliveira, J.E.; Arteiro, A.; Camanho, P.P.; Braga, M.H. Structural batteries: A review. Molecules 2021, 26, 2203. [Google Scholar] [CrossRef] [PubMed]
- Kalnaus, S.; Asp, L.E.; Li, J.; Veith, G.M.; Nanda, J.; Daniel, C.; Chen, X.C.; Westover, A.; Dudney, N.J. Multifunctional approaches for safe structural batteries. J. Energy Storage 2021, 40, 102747. [Google Scholar] [CrossRef]
- Kalita, G.; Endo, T.; Nishi, T. Recent development on low temperature synthesis of cubic-phase LLZO electrolyte particles for application in all-solid-state batteries. J. Alloy Compd. 2023, 969, 102747. [Google Scholar] [CrossRef]
- Tuo, K.; Sun, C.; Liu, S. Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. Electrochem. Energy Rev. 2023, 6, 17. [Google Scholar] [CrossRef]
- Yang, X.; Yin, Q.; Wang, C.; Doyle-Davis, K.; Sun, X.; Li, X. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Prog. Mater. Sci. 2023, 140, 102747. [Google Scholar] [CrossRef]
- Snyder, J.; Gienger, E.; Wetzel, E. Performance metrics for structural composites with electrochemical multifunctionality. J. Compos. Mater. 2015, 49, 1835–1848. [Google Scholar] [CrossRef]
- González, C.; Vilatela, J.; Molina-Aldareguía, J.; Lopes, C.; Llorca, J. Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 2017, 89, 194–251. [Google Scholar] [CrossRef]
- Greenhalgh, E.S.; Nguyen, S.; Valkova, M.; Shirshova, N.; Shaffer, M.S.; Kucernak, A. A critical review of structural supercapacitors and outlook on future research challenges. Compos. Sci. Technol. 2023, 235, 102747. [Google Scholar] [CrossRef]
- Jin, T.; Singer, G.; Liang, K.; Yang, Y. Structural batteries: Advances, challenges and perspectives. Mater. Today 2023, 62, 151–167. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, S.; Li, D.; Liao, J.; Ji, F.; Liu, H.; Ci, L. Commercial carbon cloth: An emerging substrate for practical lithium metal batteries. Energy Storage Mater. 2022, 48, 172–190. [Google Scholar] [CrossRef]
- Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R.P. Next-generation textiles: From embedded supercapacitors to lithium ion batteries. J. Mater. Chem. A 2016, 4, 16771–16800. [Google Scholar] [CrossRef]
- Asp, L.E.; Bouton, K.; Carlstedt, D.; Duan, S.; Harnden, R.; Johannisson, W.; Johansen, M.; Johansson, M.K.G.; Lindbergh, G.; Liu, F.; et al. A Structural Battery and its Multifunctional Performance. Adv. Energy Sustain. Res. 2021, 2, 2000093. [Google Scholar] [CrossRef]
- Moyer, K.; Meng, C.; Marshall, B.; Assal, O.; Eaves, J.; Perez, D.; Karkkainen, R.; Roberson, L.; Pint, C.L. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats. Energy Storage Mater. 2020, 24, 676–681. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, G.; Zhang, X.; Shi, Z. Mace-like carbon fibers@Fe3O4@carbon composites as anode materials for lithium-ion batteries. Ionics 2020, 26, 5923–5934. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, H.; Xiong, T.; Adekoya, D.; Qiu, W.; Wang, Z.; Zhang, S.; Balogun, M.-S. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater. 2020, 25, 41–51. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, W.; Han, Z.; Wang, F.; Geng, D.; Li, X.; Li, Y.; Zhang, X. Preparation of PAN-based carbon fiber@MnO2 composite as an anode material for structural lithium-ion batteries. J. Mater. Sci. 2019, 54, 11972–11982. [Google Scholar] [CrossRef]
- Subhani, K.; Hameed, N.; Al-Qatatsheh, A.; Ince, J.; Mahon, P.J.; Lau, A.; Salim, N.V. Multifunctional structural composite supercapacitors based on MnO2-nanowhiskers decorated carbon fibers. J. Energy Storage 2022, 56, 105936. [Google Scholar] [CrossRef]
- Artigas-Arnaudas, J.; Sánchez-Romate, X.F.; Sánchez, M.; Ureña, A. Effect of electrode surface treatment on carbon fiber based structural supercapacitors: Electrochemical analysis, mechanical performance and proof-of-concept. J. Energy Storage 2023, 59, 106599. [Google Scholar] [CrossRef]
- Cen, T.; Chen, L.; Zhang, X.; Tian, Y.; Fan, X. A novel fiber-shaped asymmetric supercapacitor prepared by twisting carbon fiber/carbon nanotube/MnO2 and carbon fiber/carbon nanotube/polypyrrole electrodes+. Electrochim. Acta 2021, 367, 137488. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, J.; Dong, Z.; Lin, H.; Han, S. Flexible carbon fiber/reduced-TiO2 composites for constructing remarkable performance supercapacitors. J. Power Sources 2022, 550, 232169. [Google Scholar] [CrossRef]
- Saravanan, R.S.A.; Bejigo, K.S.; Kim, S.-J. Scope and significance of transition metal oxide nanomaterials for next-generation Li-ion batteries. Mater. Chem. Front. 2023, 7, 4613–4634. [Google Scholar] [CrossRef]
- Ayyanusamy, P.; Alphonse, R.; Minakshi, M.; Sivasubramanian, R. Synthesis of amorphous nickel-cobalt hydroxides for Ni−Zn batteries. Chem. A Eur. J. 2024, 30, e202402325. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ding, Y.; Ma, Z.; Tang, W.; Chen, X.; Lu, Y. Recent Progress on Nanostructured Transition Metal Oxides As Anode Materials for Lithium-Ion Batteries. J. Electron. Mater. 2022, 51, 3391–3417. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A. Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J. Energy Storage 2021, 44, 103295. [Google Scholar] [CrossRef]
- Zhu, X. Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: A review of structures, synthetic strategies, and mechanism studies. J. Energy Storage 2022, 49, 104148. [Google Scholar] [CrossRef]
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chem.–Asian J. 2024, 19, e202400202. [Google Scholar] [CrossRef]
- Yuan, C.; Bin Wu, H.; Xie, Y.; Lou, X.W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Li, M.; Meng, Z.; Feng, R.; Zhu, K.; Zhao, F.; Wang, C.; Wang, J.; Wang, L.; Chu, P.K. Fabrication of bimetallic oxides (MCo2O4: M=Cu, Mn) on ordered microchannel electro-conductive plate for high-performance hybrid supercapacitors. Sustainability 2021, 13, 9896. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, K.; Li, Z.; Xu, S.; Yao, G.; Niu, P.; Zheng, F. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Trans. 2020, 49, 11597–11604. [Google Scholar] [CrossRef]
- Zhang, X.; Du, W.; Lin, Z.; Tan, X.; Li, Y.; Ou, G.; Xu, X.; Lin, X.; Wu, Y.; Zeb, A.; et al. Templated formation of Mn2O3 derived from metal-organic frameworks with different organic ligands as anode materials for enhanced lithium-ion storage. J. Alloy. Compd. 2022, 927, 166977. [Google Scholar] [CrossRef]
- Tan, X.; Wu, Y.; Lin, X.; Zeb, A.; Xu, X.; Luo, Y.; Liu, J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 4939–4955. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Q.; Xie, Q.; Ou, H.; Lin, X.; Zeb, A.; Hu, L.; Wu, Y.; Ma, G. Recent progress in Co–based metal–organic framework derivatives for advanced batteries. J. Mater. Sci. Technol. 2022, 96, 262–284. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhang, B.; Tian, S.; Yang, X.; Ye, H.; Xia, Z.; Zheng, G. Application of MOFs-derived mixed metal oxides in energy storage. J. Electroanal. Chem. 2020, 878, 114576. [Google Scholar] [CrossRef]
- Vanaraj, R.; Daniel, S.; Haldhar, R.; Asrafali, S.P.; Kim, S.C. Direct growth of TiO2–MoO2/MnO2–MoO2 on plasma-treated carbon-cloth surface for high-performance supercapacitor and oxygen evolution reaction. Electrochim. Acta 2023, 440, 141705. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, P.; Liu, H.; Yan, L.; Song, H.; Liu, D.; Zhao, X. Metal-organic framework derived porous flakes of cobalt chalcogenides (CoX, X = O, S, Se and Te) rooted in carbon fibers as flexible electrode materials for pseudocapacitive energy storage. Electrochim. Acta 2021, 369, 137681. [Google Scholar] [CrossRef]
- Gong, H.; Bie, S.; Zhang, J.; Ke, X.; Wang, X.; Liang, J.; Wu, N.; Zhang, Q.; Luo, C.; Jia, Y. In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor. Nanomaterials 2022, 12, 1571. [Google Scholar] [CrossRef]
- Guan, C.; Zhao, W.; Hu, Y.; Lai, Z.; Li, X.; Sun, S.; Zhang, H.; Cheetham, A.K.; Wang, J. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horiz. 2017, 2, 99–105. [Google Scholar] [CrossRef]
- Liu, S.; Kang, L.; Zhang, J.; Jung, E.; Lee, S.; Jun, S.C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 2020, 32, 167–177. [Google Scholar] [CrossRef]
- Dai, S.; Han, F.; Tang, J.; Tang, W. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochim. Acta 2019, 328, 135103. [Google Scholar] [CrossRef]
- Lim, G.J.; Liu, X.; Guan, C.; Wang, J. Co/Zn bimetallic oxides derived from metal organic frameworks for high performance electrochemical energy storage. Electrochim. Acta 2018, 291, 177–187. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Yan, M.; Lei, Y.; Shi, W. MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 370, 666–676. [Google Scholar] [CrossRef]
- Wang, F.; Han, Q.; Yi, Z.; Geng, D.; Li, X.; Wang, Z.; Wang, L. Synthesis and performances of carbon fiber@Co3O4 based on metal organic frameworks as anode materials for structural lithium-ion battery. J. Electroanal. Chem. 2017, 807, 196–202. [Google Scholar] [CrossRef]
- Han, Q.; Li, X.; Wang, F.; Han, Z.; Geng, D.; Zhang, W.; Li, Y.; Deng, Y.; Zhang, J.; Niu, S.; et al. Carbon fiber@ pore-ZnO composite as anode materials for structural lithium-ion batteries. J. Electroanal. Chem. 2019, 833, 39–46. [Google Scholar] [CrossRef]
- Huang, T.; Lou, Z.; Lu, Y.; Li, R.; Jiang, Y.; Shen, G.; Chen, D. Metal-Organic-Framework-Derived MCo2O4 (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications. ChemElectroChem 2019, 6, 5836–5843. [Google Scholar] [CrossRef]
- Guan, C.; Liu, X.; Ren, W.; Li, X.; Cheng, C.; Wang, J. Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. [Google Scholar] [CrossRef]
- Javed, M.S.; Aslam, M.K.; Asim, S.; Batool, S.; Idrees, M.; Hussain, S.; Shah, S.S.A.; Saleem, M.; Mai, W.; Hu, C. High-performance flexible hybrid-supercapacitor enabled by pairing binder-free ultrathin Ni–Co–O nanosheets and metal-organic framework derived N-doped carbon nanosheets. Electrochim. Acta 2020, 349, 136384. [Google Scholar] [CrossRef]
- Chen, S.; Wu, J.; Zhou, R.; Chen, Y.; Song, Y.; Wang, L. Controllable growth of NiCo2O4 nanoarrays on carbon fiber cloth and its anodic performance for lithium-ion batteries. RSC Adv. 2015, 5, 104433–104440. [Google Scholar] [CrossRef]
- Dai, S.; Yuan, Y.; Yu, J.; Tang, J.; Zhou, J.; Tang, W. Metal–organic framework-templated synthesis of sulfur-doped core–sheath nanoarrays and nanoporous carbon for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2018, 10, 15454–15461. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, H.; Hu, Z.; Yin, S.; Zhou, L. Temperature-induced microstructure optimization of Co3O4 for the achievement of a high-areal-capacity carbon cloth-based lithium ion battery anode. Compos. Commun. 2020, 22, 100446. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, J.; Liang, C.; Pan, A.; Zhang, C.; Tang, Y.; Tan, X.; Liu, J.; Liang, S. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 2016, 26, 57–65. [Google Scholar] [CrossRef]
- Liu, T.; Wang, W.; Yi, M.; Chen, Q.; Xu, C.; Cai, D.; Zhan, H. Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem. Eng. J. 2018, 354, 454–462. [Google Scholar] [CrossRef]
- Dai, Z.; Long, Z.; Li, R.; Shi, C.; Qiao, H.; Wang, K.; Liu, K. Metal–Organic Framework-Structured Porous ZnCo2O4/C Composite Nanofibers for High-Rate Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 12378–12384. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Feng, M.; Yang, J.; Zhang, B. MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries. Chin. Chem. Lett. 2019, 30, 529–532. [Google Scholar] [CrossRef]
- Wu, X.; Meng, L.; Wang, Q.; Zhang, W.; Wang, Y. Highly flexible and large areal/volumetric capacitances for asymmetric supercapacitor based on ZnCo2O4 nanorods arrays and polypyrrole on carbon cloth as binder-free electrodes. Mater. Lett. 2019, 234, 1–4. [Google Scholar] [CrossRef]
- Feng, M.; Wang, S.; Yu, Y.; Feng, Q.; Yang, J.; Zhang, B. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries. Appl. Surf. Sci. 2017, 392, 27–35. [Google Scholar] [CrossRef]
- Gholampour, N.; Ahmadian-Yazdi, M.-R. Investigation of zeolitic imidazolate frameworks–derived carbon nanotubes thin film in solar vapor generation. J. Porous Mater. 2021, 28, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Tian, J.; Sun, M.; Yuan, D.; Zhang, L. Nitrogen doped CuCo2O4 nanoparticles anchored on beaded-like carbon nanofibers as an efficient bifunctional oxygen catalyst toward zinc-air battery. J. Colloid Interface Sci. 2022, 608, 1105–1115. [Google Scholar] [CrossRef]
- Mary, A.J.C.; Bose, A.C. Incorporating Mn2+/Ni2+/Cu2+/Zn2+ in the Co3O4 Nanorod: To Investigate the Effect of Structural Modification in the Co3O4 Nanorod and Its Electrochemical Performance. ChemistrySelect 2019, 4, 160–170. [Google Scholar] [CrossRef]
- Kavinkumar, T.; Vinodgopal, K.; Neppolian, B. Development of nanohybrids based on porous spinel MCo2O4 (M = Zn, Cu, Ni and Mn)/reduced graphene oxide/carbon nanotube as promising electrodes for high performance energy storage devices. Appl. Surf. Sci. 2020, 513, 145781. [Google Scholar] [CrossRef]
- Asghari, A.; Kazemi, S.H.; Khanmohammadi, M. Facile and binder-free synthesis of N-doped carbon/ZnCo2O4 hybrid nanostructures on nickel foam for high-performance solid-state asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 4354–4363. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, S. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 2011, 1, 588–595. [Google Scholar] [CrossRef]
- Kamble, G.P.; Kashale, A.A.; Rasal, A.S.; Mane, S.A.; Chavan, R.A.; Chang, J.-Y.; Ling, Y.-C.; Kolekar, S.S.; Ghule, A.V. Marigold micro-flower like NiCo2O4 grown on flexible stainless-steel mesh as an electrode for supercapacitors. RSC Adv. 2021, 11, 3666–3672. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, H.; Guo, D.; Ma, J.; Li, Q.; Chen, L.; Wang, T. Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim. Acta 2014, 132, 332–337. [Google Scholar] [CrossRef]
- Patil, D.R.; Koteswararao, B.; Begari, K.; Yogi, A.; Moussa, M.; Dubal, D.P. Cobalt Cyclotetraphosphate (Co2P4O12): A New High-Performance Electrode Material for Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 2972–2981. [Google Scholar] [CrossRef]
- Wilson, M.K.; Saikrishna, V.; Mannayil, J.; Sreeja, E.M.; Abhilash, A.; Antony, A.; Jayaraj, M.K.; Jayalekshmi, S. Exploring the potential of iron oxide nanoparticle embedded carbon nanotube/polyaniline composite as anode material for Li-ion cells. J. Mater. Sci. Mater. Electron. 2023, 34, 1689. [Google Scholar] [CrossRef]
Undoped | Zn-Doped | Mn-Doped | Ni-Doped | |
---|---|---|---|---|
IR drop | 67 mV | 55 mV | 64 mV | 58 mV |
Internal Resistance | 0.134 Ω | 0.110 Ω | 0.128 Ω | 0.116 Ω |
Undoped | Zn-Doped | Mn-Doped | Ni-Doped | |
---|---|---|---|---|
Charge-transfer Resistance (Rct) | 28.5 Ω | 19.4 Ω | 20.6 Ω | 20.2 Ω |
Serial Resistance (Rs) | 4.0 Ω | 3.9 Ω | 3.8 Ω | 3.6 Ω |
Fresh | After the First Cycle | After 100 Cycles | |
---|---|---|---|
Charge-transfer resistance (Rct) | 20.2 Ω | 32.4 Ω | 74.8 Ω |
Serial resistance (Rs) | 3.6 Ω | 4.0 Ω | 3.7 Ω |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Banciella, A.; Martinez-Diaz, D.; de Hita, A.; Sánchez, M.; Ureña, A. M-Doped (M = Zn, Mn, Ni) Co-MOF-Derived Transition Metal Oxide Nanosheets on Carbon Fibers for Energy Storage Applications. Nanomaterials 2024, 14, 1846. https://doi.org/10.3390/nano14221846
González-Banciella A, Martinez-Diaz D, de Hita A, Sánchez M, Ureña A. M-Doped (M = Zn, Mn, Ni) Co-MOF-Derived Transition Metal Oxide Nanosheets on Carbon Fibers for Energy Storage Applications. Nanomaterials. 2024; 14(22):1846. https://doi.org/10.3390/nano14221846
Chicago/Turabian StyleGonzález-Banciella, Andrés, David Martinez-Diaz, Adrián de Hita, María Sánchez, and Alejandro Ureña. 2024. "M-Doped (M = Zn, Mn, Ni) Co-MOF-Derived Transition Metal Oxide Nanosheets on Carbon Fibers for Energy Storage Applications" Nanomaterials 14, no. 22: 1846. https://doi.org/10.3390/nano14221846
APA StyleGonzález-Banciella, A., Martinez-Diaz, D., de Hita, A., Sánchez, M., & Ureña, A. (2024). M-Doped (M = Zn, Mn, Ni) Co-MOF-Derived Transition Metal Oxide Nanosheets on Carbon Fibers for Energy Storage Applications. Nanomaterials, 14(22), 1846. https://doi.org/10.3390/nano14221846