Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Validation of the Simulation Model
3.2. Improving the CZTS Performance Using an Alternative Buffer Layer
3.3. Kesterite/c-Si Tandem Solar Cell Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Yadav, S.; Kareem, M.A.; Kodali, H.K.; Agarwal, D.; Garg, A.; Verma, A.; Nalwa, K.S. Optoelectronic Modeling of All-Perovskite Tandem Solar Cells with Design Rules to Achieve >30% Efficiency. Sol. Energy Mater. Sol. Cells 2022, 242, 111780. [Google Scholar] [CrossRef]
- Cariou, R.; Benick, J.; Beutel, P.; Razek, N.; Flotgen, C.; Hermle, M.; Lackner, D.; Glunz, S.W.; Bett, A.W.; Wimplinger, M.; et al. Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM 1.5g. IEEE J. Photovolt. 2017, 7, 367–373. [Google Scholar] [CrossRef]
- Essig, S.; Allebé, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K.; Barraud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the One-Sun Conversion Efficiency of III–V/Si Solar Cells to 32.8% for Two Junctions and 35.9% for Three Junctions. Nat. Energy 2017, 2, 17144. [Google Scholar] [CrossRef]
- Jain, N.; Schulte, K.L.; Geisz, J.F.; Friedman, D.J.; France, R.M.; Perl, E.E.; Norman, A.G.; Guthrey, H.L.; Steiner, M.A. High-Efficiency Inverted Metamorphic 1.7/1.1 eV GaInAsP/GaInAs Dual-Junction Solar Cells. Appl. Phys. Lett. 2018, 112, 053905. [Google Scholar] [CrossRef]
- Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M.I.; Gao, Y.; Xu, J.; Xiao, M.; et al. Monolithic All-Perovskite Tandem Solar Cells with 24.8% Efficiency Exploiting Comproportionation to Suppress Sn(Ii) Oxidation in Precursor Ink. Nat. Energy 2019, 4, 864–873. [Google Scholar] [CrossRef]
- Battaglia, C.; De Nicolás, S.M.; De Wolf, S.; Yin, X.; Zheng, M.; Ballif, C.; Javey, A. Silicon Heterojunction Solar Cell with Passivated Hole Selective MoOx Contact. Appl. Phys. Lett. 2014, 104, 113902. [Google Scholar] [CrossRef]
- Bremner, S.P.; Levy, M.Y.; Honsberg, C.B. Analysis of Tandem Solar Cell Efficiencies under AM1.5G Spectrum Using a Rapid Flux Calculation Method. Prog. Photovolt Res. Appl. 2008, 16, 225–233. [Google Scholar] [CrossRef]
- Wu, X.; Wu, D.; Cui, G.; Jiang, Z.; Zhao, C.; Tang, X.; Dong, X.; Liu, N.; Zuo, Z.; Kong, L.; et al. Exceeding 20% Efficiency for Highly Efficient and Stable Inverted Perovskite Solar Cells via Sodium Borohydride Induced Interface Engineering. Sol. RRL 2023, 7, 2200833. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3-V Voltage Loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef]
- Bush, K.A.; Palmstrom, A.F.; Yu, Z.J.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.Z.; Bailie, C.D.; Leijtens, T.; et al. 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Tseberlidis, G.; Di Palma, V.; Trifiletti, V.; Frioni, L.; Valentini, M.; Malerba, C.; Mittiga, A.; Acciarri, M.; Binetti, S.O. Titania as Buffer Layer for Cd-Free Kesterite Solar Cells. ACS Mater. Lett. 2023, 5, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.W.; Biegala, T.; Carmody, M.; Gilmore, C.; Sivananthan, S. Next-Generation Multijunction Solar Cells: The Promise of II–VI Materials. J. Appl. Phys. 2011, 109, 102423. [Google Scholar] [CrossRef]
- Jeong, A.R.; Choi, S.B.; Kim, W.M.; Park, J.-K.; Choi, J.; Kim, I.; Jeong, J. Electrical Analysis of C-Si/CGSe Monolithic Tandem Solar Cells by Using a Cell-Selective Light Absorption Scheme. Sci. Rep. 2017, 7, 15723. [Google Scholar] [CrossRef]
- Tsuji, K.; Maeda, T.; Wada, T. Optical Properties and Electronic Structures of Cu2ZnSnS4, Cu2ZnGeS4, and Cu2 Zn(Ge,Sn)S4 and Cu2Zn(Ge,Sn)Se4 Solid Solutions. Jpn. J. Appl. Phys. 2018, 57, 08RC21. [Google Scholar] [CrossRef]
- Laghfour, Z.; Aazou, S.; Taibi, M.; Schmerber, G.; Ulyashin, A.; Dinia, A.; Slaoui, A.; Abd-Lefdil, M.; Sekkat, Z. Sodium Doping Mechanism on Sol-Gel Processed Kesterite Cu2ZnSnS4 Thin Films. Superlattices Microstruct. 2018, 120, 747–752. [Google Scholar] [CrossRef]
- Saini, N.; Martin, N.M.; Larsen, J.K.; Hultqvist, A.; Törndahl, T.; Platzer-Björkman, C. Record 1.1 V Open-Circuit Voltage for Cu 2ZnGeS4-Based Thin-Film Solar Cells Using Atomic Layer Deposition Zn1−x SnxOy Buffer Layers. Sol. RRL 2022, 6, 2100837. [Google Scholar] [CrossRef]
- Kistanov, A.A.; Cao, W.; Huttula, M.; Khadiullin, S.K.; Korznikova, E.A.; Smirnov, A.; Wang, X.; Zhuk, S. Impact of Various Dopant Elements on the Electronic Structure of Cu2ZnSnS4 (CZTS) Thin Films: A DFT Study. CrystEngComm 2020, 22, 5786–5791. [Google Scholar] [CrossRef]
- Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K.; et al. Cu2ZnSnS4 Solar Cells with over 10% Power Conversion Efficiency Enabled by Heterojunction Heat Treatment. Nat. Energy 2018, 3, 764–772. [Google Scholar] [CrossRef]
- Gong, Y.; Zhu, Q.; Li, B.; Wang, S.; Duan, B.; Lou, L.; Xiang, C.; Jedlicka, E.; Giridharagopal, R.; Zhou, Y.; et al. Elemental De-Mixing-Induced Epitaxial Kesterite/CdS Interface Enabling 13%-Efficiency Kesterite Solar Cells. Nat. Energy 2022, 7, 966–977. [Google Scholar] [CrossRef]
- Valentini, M.; Malerba, C.; Serenelli, L.; Izzi, M.; Salza, E.; Tucci, M.; Mittiga, A. Fabrication of Monolithic CZTS/Si Tandem Cells by Development of the Intermediate Connection. Sol. Energy 2019, 190, 414–419. [Google Scholar] [CrossRef]
- Hajijafarassar, A.; Martinho, F.; Stulen, F.; Grini, S.; López-Mariño, S.; Espíndola-Rodríguez, M.; Döbeli, M.; Canulescu, S.; Stamate, E.; Gansukh, M.; et al. Monolithic Thin-Film Chalcogenide–Silicon Tandem Solar Cells Enabled by a Diffusion Barrier. Sol. Energy Mater. Sol. Cells 2020, 207, 110334. [Google Scholar] [CrossRef]
- Zhuk, S.; Wong, T.K.S.; Petrović, M.; Kymakis, E.; Hadke, S.S.; Lie, S.; Wong, L.H.; Sonar, P.; Dey, A.; Krishnamurthy, S.; et al. Solution-Processed Pure Sulfide Cu2(Zn0.6Cd0.4)SnS4 Solar Cells with Efficiency 10.8% Using Ultrathin CuO Intermediate Layer. Sol. RRL 2020, 4, 2000293. [Google Scholar] [CrossRef]
- Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. Adv. Mater. 2019, 31, 1806692. [Google Scholar] [CrossRef]
- Sravani, L.; Routray, S.; Courel, M.; Pradhan, K.P. Loss Mechanisms in CZTS and CZTSe Kesterite Thin-Film Solar Cells: Understanding the Complexity of Defect Density. Sol. Energy 2021, 227, 56–66. [Google Scholar] [CrossRef]
- Benhaddou, N.; Aazou, S.; Fonoll-Rubio, R.; Sánchez, Y.; Giraldo, S.; Guc, M.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Abd-Lefdil, M.; Sekkat, Z.; et al. Uncovering Details behind the Formation Mechanisms of Cu2ZnGeSe4 Photovoltaic Absorbers. J. Mater. Chem. C 2020, 8, 4003–4011. [Google Scholar] [CrossRef]
- Kauk-Kuusik, M.; Timmo, K.; Muska, K.; Pilvet, M.; Krustok, J.; Josepson, R.; Brammertz, G.; Vermang, B.; Danilson, M.; Grossberg, M. Detailed Insight into the CZTS/CdS Interface Modification by Air Annealing in Monograin Layer Solar Cells. ACS Appl. Energy Mater. 2021, 4, 12374–12382. [Google Scholar] [CrossRef]
- Gour, K.S.; Parmar, R.; Kumar, R.; Singh, V.N. Cd-Free Zn(O,S) as Alternative Buffer Layer for Chalcogenide and Kesterite Based Thin Films Solar Cells: A Review. J. Nanosci. Nanotechnol. 2020, 20, 3622–3635. [Google Scholar] [CrossRef]
- Martin, N.M.; Törndahl, T.; Babucci, M.; Larsson, F.; Simonov, K.; Gajdek, D.; Merte, L.R.; Rensmo, H.; Platzer-Björkman, C. Atomic Layer Grown Zinc–Tin Oxide as an Alternative Buffer Layer for Cu2ZnSnS4-Based Thin Film Solar Cells: Influence of Absorber Surface Treatment on Buffer Layer Growth. ACS Appl. Energy Mater. 2022, 5, 13971–13980. [Google Scholar] [CrossRef]
- Löckinger, J.; Nishiwaki, S.; Weiss, T.P.; Bissig, B.; Romanyuk, Y.E.; Buecheler, S.; Tiwari, A.N. TiO2 as Intermediate Buffer Layer in Cu(In,Ga)Se2 Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 174, 397–404. [Google Scholar] [CrossRef]
- Bencherif, H.; Dehimi, L.; Mahsar, N.; Kouriche, E.; Pezzimenti, F. Modeling and Optimization of CZTS Kesterite Solar Cells Using TiO2 as Efficient Electron Transport Layer. Mater. Sci. Eng. B 2022, 276, 115574. [Google Scholar] [CrossRef]
- Sadanand; Dwivedi, D.K. Numerical Modeling for Earth-Abundant Highly Efficient Solar Photovoltaic Cell of Non-Toxic Buffer Layer. Opt. Mater. 2020, 109, 110409. [Google Scholar] [CrossRef]
- Avasthi, S.; McClain, W.E.; Man, G.; Kahn, A.; Schwartz, J.; Sturm, J.C. Hole-Blocking Titanium-Oxide/Silicon Heterojunction and Its Application to Photovoltaics. Appl. Phys. Lett. 2013, 102, 203901. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Saini, M.; Singh, A.; Satpati, B.; Som, T. Growth of TiO2 Thin Films on Chemically Textured Si for Solar Cell Applications as a Hole-Blocking and Antireflection Layer. Appl. Surf. Sci. 2017, 418, 225–231. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid. Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Et-taya, L.; Ouslimane, T.; Benami, A. Numerical Analysis of Earth-Abundant Cu2ZnSn(SxSe1−x)4 Solar Cells Based on Spectroscopic Ellipsometry Results by Using SCAPS-1D. Solar Energy 2020, 201, 827–835. [Google Scholar] [CrossRef]
- Adewoyin, A.D.; Olopade, M.A.; Oyebola, O.O.; Chendo, M.A. Development of CZTGS/CZTS Tandem Thin Film Solar Cell Using SCAPS-1D. Optik 2019, 176, 132–142. [Google Scholar] [CrossRef]
- AlZoubi, T.; Moghrabi, A.; Moustafa, M.; Yasin, S. Efficiency Boost of CZTS Solar Cells Based on Double-Absorber Architecture: Device Modeling and Analysis. Sol. Energy 2021, 225, 44–52. [Google Scholar] [CrossRef]
- Belarbi, F.; Rahal, W.; Rached, D.; Benghabrit, S.; Adnane, M. A Comparative Study of Different Buffer Layers for CZTS Solar Cell Using Scaps-1D Simulation Program. Optik 2020, 216, 164743. [Google Scholar] [CrossRef]
- Patel, M.; Ray, A. Enhancement of Output Performance of Cu2ZnSnS4 Thin Film Solar Cells—A Numerical Simulation Approach and Comparison to Experiments. Phys. B Condens. Matter 2012, 407, 4391–4397. [Google Scholar] [CrossRef]
- Simya, O.K.; Mahaboobbatcha, A.; Balachander, K. A Comparative Study on the Performance of Kesterite Based Thin Film Solar Cells Using SCAPS Simulation Program. Superlattices Microstruct. 2015, 82, 248–261. [Google Scholar] [CrossRef]
- Benisha, C.A.; Routray, S. Performance Enhancement of Kesterite Solar Cell with Doped-Silicon Back Surface Field Layer. Silicon 2022, 14, 8045–8054. [Google Scholar] [CrossRef]
- Jimenez-Arguijo, A.; Medaille, A.G.; Navarro-Güell, A.; Jimenez-Guerra, M.; Tiwari, K.J.; Placidi, M.; Mkehlane, M.S.; Iwuoha, E.; Perez-Rodriguez, A.; Saucedo, E.; et al. Setting the Baseline for the Modelling of Kesterite Solar Cells: The Case Study of Tandem Application. Sol. Energy Mater. Sol. Cells 2023, 251, 112109. [Google Scholar] [CrossRef]
- Kim, S.; Márquez, J.A.; Unold, T.; Walsh, A. Upper Limit to the Photovoltaic Efficiency of Imperfect Crystals from First Principles. Energy Environ. Sci. 2020, 13, 1481–1491. [Google Scholar] [CrossRef]
- Kanti Basu, P.; Hameiri, Z.; Sarangi, D.; Cunnusamy, J.; Carmona, E.; Boreland, M.B. 18.7% Efficient Inline-Diffused Screen-Printed Silicon Wafer Solar Cells with Deep Homogeneous Emitter Etch-Back. Sol. Energy Mater. Sol. Cells 2013, 117, 412–420. [Google Scholar] [CrossRef]
- Lauwaert, J. Fill Factor Loss in a Recombination Junction for Monolithic Tandem Solar Cells. ACS Appl. Energy Mater. 2023, 6, 4211–4218. [Google Scholar] [CrossRef]
- Kim, K.; Gwak, J.; Ahn, S.K.; Eo, Y.-J.; Park, J.H.; Cho, J.-S.; Kang, M.G.; Song, H.-E.; Yun, J.H. Simulations of Chalcopyrite/c-Si Tandem Cells Using SCAPS-1D. Sol. Energy 2017, 145, 52–58. [Google Scholar] [CrossRef]
- Kim, K.; Yoo, J.S.; Ahn, S.K.; Eo, Y.-J.; Cho, J.-S.; Gwak, J.; Yun, J.H. Performance Prediction of Chalcopyrite-Based Dual-Junction Tandem Solar Cells. Sol. Energy 2017, 155, 167–177. [Google Scholar] [CrossRef]
- Atowar Rahman, M. Enhancing the Photovoltaic Performance of Cd-Free Cu2ZnSnS4 Heterojunction Solar Cells Using SnS HTL and TiO2 ETL. Sol. Energy 2021, 215, 64–76. [Google Scholar] [CrossRef]
- Gupta, G.K.; Dixit, A. Theoretical Studies of Single and Tandem Cu2ZnSn(S/Se)4 Junction Solar Cells for Enhanced Efficiency. Opt. Mater. 2018, 82, 11–20. [Google Scholar] [CrossRef]
- Rana, M.S.; Islam, M.M.; Julkarnain, M. Enhancement in Efficiency of CZTS Solar Cell by Using CZTSe BSF Layer. Sol. Energy 2021, 226, 272–287. [Google Scholar] [CrossRef]
- Kannan, P.K.; Anandkumar, M. A Theoretical Investigation to Boost the Efficiency of CZTS Solar Cells Using SCAPS-1D. Optik 2023, 288, 171214. [Google Scholar] [CrossRef]
- Kauk-Kuusik, M.; Timmo, K.; Muska, K.; Pilvet, M.; Krustok, J.; Danilson, M.; Mikli, V.; Josepson, R.; Grossberg-Kuusk, M. Reduced Recombination through CZTS/CdS Interface Engineering in Monograin Layer Solar Cells. J. Phys. Energy 2022, 4, 024007. [Google Scholar] [CrossRef]
- De Bastiani, M.; Subbiah, A.S.; Aydin, E.; Isikgor, F.H.; Allen, T.G.; De Wolf, S. Recombination Junctions for Efficient Monolithic Perovskite-Based Tandem Solar Cells: Physical Principles, Properties, Processing and Prospects. Mater. Horiz. 2020, 7, 2791–2809. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Group-IV, III-V and II-VI Semiconductors; Wiley Series in Materials for Electronic and Optoelectronic Applications; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2006; ISBN 978-0-470-09032-9. [Google Scholar]
- Adachi, S. Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors; John Wiley & Sons, Inc.: Chichester, West Sussex, UK, 2015; ISBN 978-1-119-05278-4. [Google Scholar]
- Elbar, M.; Tobbeche, S.; Merazga, A. Effect of Top-Cell CGS Thickness on the Performance of CGS/CIGS Tandem Solar Cell. Sol. Energy 2015, 122, 104–112. [Google Scholar] [CrossRef]
- Ho Song, S.; Aydil, E.S.; Campbell, S.A. Metal-Oxide Broken-Gap Tunnel Junction for Copper Indium Gallium Diselenide Tandem Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 133, 133–142. [Google Scholar] [CrossRef]
- Al-Hattab, M.; Oublal, E.; Chrafih, Y.; Moudou, L.; Bajjou, O.; Sahal, M.; Rahmani, K. Novel Simulation and Efficiency Enhancement of Eco-Friendly Cu2FeSnS4/c-Silicon Tandem Solar Device. Silicon 2023, 15, 7311–7319. [Google Scholar] [CrossRef]
Material Properties | p-Si | n-Si | CZTS | CdS | i-ZnO | ITO | TiO2 |
---|---|---|---|---|---|---|---|
Thickness (µm) | 400 | 0.5 | 1.2 | 0.06 | 0.05 | 0.4 | 0.06 |
Bandgap (eV) | 1.12 | 1.12 | 1.5 | 2.40 | 3.37 | 3.37 | 3.26 |
Electron affinity (eV) | 4.46 | 4.46 | 4.1 | 4.2 | 4.6 | 4.6 | 3.7 |
Dielectric permittivity | 9.1 | 9.1 | 7 | 10 | 9 | 9 | 55 |
CB (cm−3) × 1019 | 2.8 | 2.8 | 2.2 | 2.2 | 2.2 | 2.2 | 2 |
VB (cm−3) × 1019 | 1.040 | 1.040 | 1.8 | 1.8 | 1.8 | 1.8 | 6 |
Electron mobility (cm2/Vs) | 1500 | 1500 | 100 | 100 | 150 | 150 | 100 |
Hole mobility (cm2/Vs) | 450 | 450 | 25 | 25 | 25 | 25 | 25 |
Nd (cm−3) | 0 | 5 × 1020 | 0 | 1018 | 1017 | 1020 | 1017 |
Na (cm−3) | 5 × 1016 | 0 | 1.1016 | 0 | 0 | 0 | 0 |
Defect Properties | Type | Density (cm−3) | Energy Level (eV) | Capture Cross Section (cm2) |
---|---|---|---|---|
Bulk CZTS | Single donor | 5 × 1015 | 0.900 above Ev | 1 × 10−14 |
CdS | Neutral | Grading 1.772 × 1015 9.997 × 1017 | 1.200 above Ev | 1 × 10−13 |
CZTS/CdS | Acceptor | 2.00 × 1013 | 0.300 above the highest Ev | 1.00 × 10−14 |
Bandgap (eV) | Top Subcell Buffer Layer | Matching Conditions | Thickness (µm) | JSC (mA/cm2) | JMPP (mA/cm2) | VOC (V) | VMPP (V) | FF % | Eff % |
---|---|---|---|---|---|---|---|---|---|
1.5 | CdS | JMPP | 0.50 | 14.8 | 14.06 | 1.31 | 1.12 | 80. | 15.74 |
1.6 | TiO2 | JSC | 0.50 | 17.26 | 15.65 | 1.37 | 1.19 | 79 | 18.62 |
TiO2 | JMPP | 0.55 | 16.75 | 16.00 | 1.37 | 1.19 | 79 | 19.36 | |
CdS | JSC | 0.50 | 16.86 | 12.54 | 1.35 | 1.15 | 63 | 14.42 | |
CdS | JMPP | 0.80 | 14.84 | 14.11 | 1.36 | 1.17 | 81 | 16.50 | |
1.7 | TiO2 | JSC | 0.76 | 17.18 | 15.86 | 1.46 | 1.25 | 79 | 19.82 |
TiO2 | JMPP | 0.80 | 16.95 | 16.14 | 1.47 | 1.25 | 81 | 20.18 | |
CdS | JSC | 0.84 | 17.16 | 12.50 | 1.42 | 1.20 | 61.5 | 15.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ennouhi, N.; Aazou, S.; Er-rafyg, A.; Laghfour, Z.; Sekkat, Z. Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis. Nanomaterials 2024, 14, 1722. https://doi.org/10.3390/nano14211722
Ennouhi N, Aazou S, Er-rafyg A, Laghfour Z, Sekkat Z. Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis. Nanomaterials. 2024; 14(21):1722. https://doi.org/10.3390/nano14211722
Chicago/Turabian StyleEnnouhi, Naoufal, Safae Aazou, Abdeljalile Er-rafyg, Zakaria Laghfour, and Zouheir Sekkat. 2024. "Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis" Nanomaterials 14, no. 21: 1722. https://doi.org/10.3390/nano14211722
APA StyleEnnouhi, N., Aazou, S., Er-rafyg, A., Laghfour, Z., & Sekkat, Z. (2024). Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis. Nanomaterials, 14(21), 1722. https://doi.org/10.3390/nano14211722